Ultrafast Photoelectron Spectroscopy of N2 Rydberg Wavepackets

Mizuho Fushitani¹, <u>Yuto Toida</u>¹, François Légaré², Akiyoshi Hishikawa¹ *Nagoya University, Nagoya, 464-8601, Japan INRS-EMT, Quebec, Canada*

Recent developments of laser high-order harmonics generation have enabled us to employ ultrashort laser pulse as a probe for accessing atomic/molecular Rydberg states lying in EUV. In this work, we investigated Rydberg wavepackets dynamics of N_2 using single-order harmonics at 80 nm and ultrashort laser pulse at 800 nm. Three extra peaks (v=2-4) are identified in the photoelectron spectra in addition to the other two peaks (v=0,1) observed in the conventional He I photoelectron spectrum. Each peak exhibits ultrafast decay characterized by double exponential function with ~ 0.3 and ~ 3 ps lifetime components. At a short time delay, periodic oscillation (~ 280 fs) was identified for v=0, which is attributed to the motion of electron wavepakets in the Rydberg levels.