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//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();
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Summary

When a molecule is subject to a strong laser field, there is a probability that
an electron can escape, even though the electrons are bound by a large po-
tential barrier. This is possible because electrons are quantum mechanical
in nature, and they are therefore able to tunnel through potential barriers,
an ability classical particles do not possess. Tunnelling is a fundamental
quantum mechanical process, a process that is distinctly non-classical, so
solving this tunnelling problem is not only relevant for molecular physics,
but also for quantum theory in general.

In this dissertation the theory of tunneling ionization of molecules
is presented and the results of numerical calculations are shown. One
perhaps surprising result is, that the frequently used Born-Oppenheimer
approximation breaks down for weak fields when describing tunneling
ionization. An analytic theory applicable in the weak-field limit which
supplements the Born-Oppenheimer approximation is also presented.

i



Dansk resumé

Når et molekyle bliver udsat for et stærkt laser felt, er der en sandsynlighed
for at en elektron kan undslippe, også selvom elektronerne er bundet af en
stor potentialbarriere. Dette er muligt fordi elektroner er kvantemekaniske
af natur, og de er derfor i stand til at tunnelere igennem potentialbarri-
erer, en evne som klassiske partikler ikke besidder. Tunnelering er en
grundlæggende kvantemekanisk proces, en proces som utvetydigt er ikke-
klassisk, så løsning af dette tunneleringsproblem er ikke kun relevant for
molekylfysik, men også for kvanteteori generelt.

I denne afhandling vil teorien for tunnelionisering blive præsenteret
og resultaterne af numeriske beregninger vises. Et muligvis overraskende
resultat er, at den hyppigt anvendte Born-Oppenheimer approksimation
bryder sammen for svage felter i beskrivelsen af tunnelionisation. En
analytisk teori som kan anvendes i svag-felts grænsen til at supplementere
Born-Oppenheimer approksimationen præsenteres også.

ii



Preface

This thesis summarizes work done during my PhD at the Department of
Physics and Astronomy, Aarhus University from August 2012 to July 2016.
The PhD was supported by the ERC-StG (Project No. 277767-TDMET).

Units
Atomic units (a.u.) ~= me = e = 1 are used throughout this thesis, unless
otherwise stated.

Acknowledgements
First, I would like to thank my supervisor Lars for making this all of this
possible, and for his ideas and help with the project. I would also like to
thank my co-supervisor Oleg, whose technical and physical insights and
attention to detail was essential for the success of the project.

For the past 4 years I have shared an office with my alter-ego, Jens E.
Bækhøj, whom I would like to thank for 4 years of more or less fruitful
discussions on physics and various other subjects, and for proofreading
this thesis. Andrew C. J. Wade, Lun Yue, Christian K. Andersen and Jørgen
Rørstad I would also like to thank for equally diverse and fruitful discus-
sions.

A special thanks goes to our group secretary Grete Flarup, for assistance
with navigating the bureaucracy of Aarhus University.

List of publications
[1] J. Svensmark, O. I. Tolstikhin, and L. B. Madsen, Coulomb and dipole

effects in tunneling ionization of molecules including nuclear motion,
Phys. Rev. A 91, 013408, Jan 2015.

iii

http://link.aps.org/doi/10.1103/PhysRevA.91.013408


iv

[2] J. Svensmark, O. I. Tolstikhin, and L. B. Madsen, Theory of dissociative
tunneling ionization, Phys. Rev. A 93, 053426, May 2016.

List of abbreviations
a.u. Atomic unit(s)

BO Born-Oppenheimer

CTP Coulomb tail potential

DVR Discrete-variable representation

FRP Finite range potential

HHG High-harmonic generation

KER Kinetic energy release

SAEA Singe-active-electron approximation

SCP Soft-core Coulomb potential

SS Siegert State

SVD Slow variable discretization (not to be confused with singular value
decomposition, which is not used in this thesis)

TDSE Time-dependent Schrödinger equation

TISE Time-independent Schrödinger equation

WFAT Weak-field asymptotic theory

http://link.aps.org/doi/10.1103/PhysRevA.93.053426


Contents

1 Introduction 1
1.1 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . 5

2 Siegert States 6
2.1 Tunneling Potential . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Three-Body Coordinates 15
3.1 Center-of-Mass Coordinates . . . . . . . . . . . . . . . . . . 15
3.2 Jacobi (Relative) Coordinates . . . . . . . . . . . . . . . . . . 17

4 Tunneling Ionization of Molecules 21
4.1 Simple Picture of Tunneling Ionization . . . . . . . . . . . . . 21
4.2 Formal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Weak-Field Asymptotic Theory . . . . . . . . . . . . . . . . 28
4.4 Born-Oppenheimer Approximation . . . . . . . . . . . . . . 35

5 Tunneling Ionization of Molecules in 3D 44
5.1 Formal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Weak-Field Asymptotic Theory . . . . . . . . . . . . . . . . 50
5.3 Born-Oppenheimer Approximation . . . . . . . . . . . . . . 56
5.4 One and Three Dimensions Compared . . . . . . . . . . . . 58

6 Numerical Methods 60
6.1 Reduction to a Multi-Channel Eigenvalue Problem . . . . 60
6.2 Spatial Basis: Discrete Variable Representation . . . . . . . . 61
6.3 Slow Variable Discretization . . . . . . . . . . . . . . . . . . . 74
6.4 R-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 Complex Rotation . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Bound Ionic States 88

v



Contents vi

7.1 Model Potentials . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Dissociative Tunneling Ionization 109
8.1 Illustrative 1D Calculations . . . . . . . . . . . . . . . . . . . 109
8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9 Dissociation and Bound Ionic States 124
9.1 H+

2 Morse and CTP Potentials (M1) . . . . . . . . . . . . . . . 124
9.2 SCP Model (M2) . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.3 Another SCP (M3) . . . . . . . . . . . . . . . . . . . . . . . . 132

A Asymptotic Expansion 144
A.1 The c4 = 0 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.2 The c4 6= 0 Case . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B WKB Approximation 149

C Reflection Approximation 151

D Continuum Normalization 156

E Soft-coulomb Potential 158

Bibliography 160



1 Introduction

Molecules are the building blocks of which most things are built. How
these molecules are formed and broken is studied in the discipline of
chemistry. This discipline has evolved over many years, from alchemists
failing at producing gold to today, where it is probably difficult to imagine
a modern society without fertilizers, plastics, medicine and the countless
other applications of chemistry. Chemistry affords a good description of
both the reactants entering a chemical reaction, and the products that
result from it. The details of the dynamics that take place during a chem-
ical reaction is, however, not something that traditional chemistry can
describe in detail. These details are typically not that important, since
the reactions happen extremely fast, faster than other process we could
possible compare them with, so we are not able to see those details any-
ways. Developing an intuition based on empirical observations as to which
products will result from a given reaction has been enough to drive the
development of chemistry into a field of science that is now essential for
the modern society.

In recent years laser technology has advanced tremendously [3], and
it is today possible to generate intense laser pulses in the femtosecond
(fs=10−15s) range. These laser pulses are so fast that their duration is
comparable to the speed at which chemical reactions occur. This makes it
possible to interfere with a chemical reaction as it happens and thereby
control it. The implications of this could be considerable, as control of
chemical processes could make it possible to create molecules that is
otherwise impossible or very difficult to make. The femtosecond laser
pulses not only have a very short duration, they are also very strong, with
field-strengths comparable with the Coulomb field that binds the electrons
to the nuclei, so the study of the interaction of these pulses with molecules
has been dubbed strong-field physics.

When an atom or a molecule is subjected to a femtosecond laser pulse
it can, under the right circumstances, produce an even shorter light pulse,

1



Chapter 1 · Introduction 2

one whose length should be measured in attoseconds (as=10−18 s) rather
than femtoseconds. The production of these very short light pulses rely
on the process of high-harmonic generation (HHG) [4], which is a highly
non-linear process in which an atom or a molecule that is subjected to a
femtosecond laser pulse emit radiation of a much higher frequency than
that of the original femtosecond pulse.

The HHG process can be simply understood on the basis of the semi-
classical three-step model [5]. Here the interaction between the femtosec-
ond laser and the molecule is partitioned in the following three steps. First,
an electron is tunnel ionized and leaves the molecule. Second, after the
electron has left the molecule, it is accelerated freely in the electric field of
the laser, and is eventually led back to the molecule from which it came,
but now with additional kinetic energy, which it received from accelera-
tion in the laser field. Third, the electron collides with the molecule. A
number of things can happen in this collision. One possibility is that the
electron simply scatters off the molecule and flies away. Another is that
the electron recombines with the molecule, and the excess kinetic energy
of the electron is emitted as a photon. The latter of these is what gives
HHG.

The first step in the three-step model is the tunneling ionization of an
electron. It is, however, not in all situations where an electron is ionized
that one can think of it as tunneling ionization. Tunneling occurs when
the field is slowly varying, that is when it has a small frequency, but is
simultaneously very strong. To see this, we first note that the time it
takes for the electron to tunnel, to the extent that the concept of such
a time makes sense, can be estimated in a classical way as follows. The
distance the electron has to travel under the barrier is roughly given by
z = Ip /F , where Ip is the ionization potential of the molecule and F is the
electric field strength of the laser. If we assume that the electron moves
at the velocity κ =√

2Ip , then the time it takes for the electron to tunnel
is Ttunnel = (Ip /F )/κ = κ/(2F ) . The laser field oscillate at the angular
frequency ω, so the inverse TLaser = 1/ω gives a time over which the laser
field changes appreciably. The ratio of these two is called the Keldysh
parameter [6] and is given by1 γ = 2Ttunnel/TLaser = κω/F . When this is
a lot larger than 1 it takes more time for the electron to tunnel than it
takes for the laser to change direction of its field, and we would not expect
the tunneling picture to give a good description of the ionization process.

1The factor of 2 is purely conventional, and not terribly important, since this is an
order of magnitude estimate anyways.
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Conversely, if the Keldysh parameter is a lot smaller than 1 the tunneling
picture should be accurate.

In addition to the use of tunneling theory in describing the HHG pro-
cess, tunneling ionization itself is a fundamental process, and the study
of it in its own right is interesting. Tunneling is a fundamental concept
of quantum mechanics, one that is almost unavoidably taught in intro-
ductory quantum mechanics courses. The reason for this is probably that
tunneling is a truly quantum mechanical phenomenon, a place in which
quantum mechanics is set apart from classical theory, which can often
be used to describe quantum results quite well. However, even though
most physicists have been introduced to the concept of tunneling, the
very technical nature of stationary tunneling states, and the complicated
behaviour of a time-dependent tunneling process, mean that few people
have seen detailed examples of tunneling beyond Dirac delta and other
simple potentials. Other than such potentials, tunneling is considered
mostly at a phenomenological level.

In this thesis we consider what happens when a molecule is sub-
ject to a constant electric field. In such a field a potential barrier forms,
through which the electron can tunnel. We solve the time-independent
Schrödinger equation (TISE). Since we only want to consider electrons
leaving the molecule we impose outgoing-wave boundary conditions. The
solutions to the TISE that fulfill this outgoing-wave boundary condition
are called Siegert states (SS) [7–9]. Chapter 2 contains an introduction to
these states.

The interaction between the nuclei and electrons in molecules are
mediated by the electric Coulomb force, and the forces act in the same
manner, and with the same strength, on the nuclei and the electrons. The
masses of the nuclei and the electrons are, however, vastly different. The
minimal ratio of masses is found in hydrogen, where the proton/electron
mass ratio is 1836. The large difference between the electron and nuclei
masses mean that we can treat each type of particle differently. In atomic
systems the nuclei is considered as a point charge, whose position is
almost unchanged by how the electrons move. The centre-of-mass motion
of the whole atom almost2 coincides with that of the nucleus, and this
motion we transform away in the beginning of most treatments anyways.

2In fact, for hydrogenic atoms where there is only 1 electron, the problem exactly
separates into a center-of-mass and a relative coordinate problem, and the nuclear mass
do not alter the analytic form of any results, and only enters in the reduced mass. For
multi-electron systems there are mass-polarization terms that somewhat complicates
this story.
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For molecules the situation is rather different, since even after we
transform away the center-of-mass motion, at least one relative nucleus-
nucleus degree of freedom remains. The difference of the masses for the
nuclear and electronic degrees of freedom means that treating such a sys-
tem numerically is fraught with peril, as anyone who ever tried to integrate
stiff differential equations would know. But, the large mass difference also
provides us with opportunities for simplifying the treatment of molecules,
both on a numerical and on an interpretive level. Almost ubiquitous with
molecular physics is the Born-Oppenheimer approximation. This ap-
proximation appears formally in the limit of infinite nuclear mass, and in
this limit the nuclear and electronic degrees of freedom partly decouple3,
which allows for separate treatments of each.

The BO approximation is today used in almost whenever some treat-
ment of molecules is given. This is so, because it is hugely successful at
describing molecular systems. There are however cases where it breaks
down. Well known examples include Rydberg systems and conical in-
tersections. Perhaps less well known is that the BO approximation also
breaks down for weak fields when describing tunneling ionization. This
was shown in Ref. [10], where a physical explanation for this breakdown
was also given [see also Sec. 4.4.4]. The present thesis is in fact an elabora-
tion and extension of the theory presented in Ref. [10].

For describing the breakdown of BO we have chosen to adopt the
single-active-electron approximation (SAEA). In this approximation, we
assume that only one electron is active, and all other electrons are frozen.
The active electron then interacts with the nuclei through an effective
potential, which can for instance be obtained through a Hartree-Fock
calculation, or chosen to have some specific analytic form. We can use
this approximation because we are mainly interested in the interaction
between the electrons and nuclei, and not the interaction between the
electrons.

The present thesis contains a series of numerical studies of the tun-
neling ionization process of a molecule in a static electric field. Parts of
the thesis is devoted to the detailed description of the numerical methods
used to do this [Chap. 6 mainly]. The numerical studies should be sup-
plemented by a sound analytic understanding of the tunneling ionization
process, not only in the form of a thorough analytic formulation of the the-

3The full problem decouples to a nuclear and an electronic problem, where the
electronic problem has a parametric dependence on the nuclear coordinate, and the
solutions of the electronic problem act as an effective potential for the nuclear problem.
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ory [which is done in Sec. 4.2], but also by extending the degree of analytic
detail by considering certain limits. One such limit is the weak field limit,
in which the so-called weak-field asymptotic theory (WFAT) [11, 12] has
been developed. WFAT is an analytic framework for obtaining ionization
rates in the weak-field limit. The rates obtained in the WFAT are expressed
in terms of analytic expressions that depend solely on properties of the
field-free states, so one does not need to solve the tunneling problem
numerically in order to obtain the tunneling ionization rates. It is today
a fairly routine task to determine field-free states of even quite complex
molecules using the standard methods of quantum chemistry. Solving the
tunneling ionization problem is, however, by no means standard in any
larger systems (or in most small systems for that matter).

1.1 Outline of the Thesis
This thesis describes the theory of tunneling ionization of diatomic mole-
cules, and numerical studies of this process. It is structured as follows:

Chapter 2 introduces Siegert states, since these are perhaps not well
known to most readers.

Chapter 3 introduces the relative Jacobi coordinates that will be used
in the remainder of the thesis, and derives the Hamiltonian in these coor-
dinates.

Chapter 4 describes the theory of tunneling ionization with one elec-
tronic dimension, including the WFAT and BO approximations.

Chapter 5 describes the same tunneling ionization theory as chapter 4,
only with three electronic dimension instead of one.

Chapter 6 introduces the numerical methods used in the calculations.
Chapter 7 presents and discusses numerical results for potentials that

only allow for bound states of the molecular ion. The content of this
chapter roughly corresponds to the content of Ref. [1].

Chapter 8 presents and discusses numerical results for potentials that
only allow for continuum states of the molecular ion. The content of this
chapter roughly corresponds to the content of Ref. [2].

Chapter 9 presents and discusses numerical results for potentials that
allow for both bound and continuum states of the molecular ion.



2 Siegert States

In this thesis we consider solutions to the time-independent Schrödin-
ger equation with outgoing-wave boundary conditions. These solutions
are known as Siegert states (SS), and since the properties of these states
are perhaps not well known, the SS will be illustrated with some simple
examples in this chapter.

Let us consider the 1D time-independent Schrödinger equation (TISE)

(H −E)ψ(x) = 0, (2.1)

with Hamiltonian

H =− 1

2m

d 2

d x2
+V (x), (2.2)

and potential (see Fig. 2.1)

V (x) =





∞ x < 0

−V0 0 < x < a

0 a < x

. (2.3)

The general solution to this problem can be written in the form

ψ(x) =
{

Ae i qx +Be−i qx 0 < x < a

Ce i kx +De−i kx a < x,
(2.4)

where

k =
p

2mE , (2.5a)

q =
√

2m(E +V0). (2.5b)

Since the potential is infinite at x < 0 we impose the boundary condi-
tion

ψ(0) = 0, (2.6)

6
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which implies A =−B . We further require that the wave function be contin-
uous and continuously differentiable at x = a which gives the conditions

A(e i qa −e−i qa) =Ce i ka +De−i ka , (2.7a)

Ai q(e i qa +e−i qa) = i k(Ce i ka −De−i ka). (2.7b)

Adding to these three conditions [Eqs. (2.6), (2.7)] a suitable normalization
condition we have 4 conditions that specify the coefficients A,B ,C and D .
Nothing fixes the energy, which can take any value.

If we consider a bound state with E < 0 we require that it be regular,
which gives the boundary condition

ψ(x)|x→∞ = 0. (2.8)

In this case k is purely imaginary, and we choose to consider the square
root branch such that Imk > 0. With this choice the boundary condition
Eq. (2.8) implies that D = 0. This combined with Eqs. (2.7) leads to

i k tan(qa) = q. (2.9)

Together with Eqs. (2.5) this equation puts restrictions on the possible
values of E . Because we imposed the additional boundary condition
Eq. (2.8), only a discrete set of energies are allowed for E < 0. For E > 0
all energies are allowed, since here we have not imposed a fifth boundary
condition. Figure 2.1(a) shows the wave function ψ(x) of these discrete
energy levels in the potential V (x). The continuum states with E > 0 are
also shown in this figure. A modulation of the continuum states along the
direction of the energy axis is visible. The continuum states are normalized
such that1

ψ(x)|x→∞ = 2sin(kx +δ), (2.10)

where δ is a free parameter. With this normalization the conditions that
the wave function should be continuous and continuously differentiable
in x = a [Eqs. (2.7)] imply that the coefficient A is given by

A =− i

sin(qa)
sin

[
tan−1

(
k

q
tan(qa)

)]
. (2.11)

1This normalization is equivalent to δ normalization, see App. D.
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(a) Illustration of bound and continuum states. The continuum states have been normal-
ized according to Eq. (2.10). Blue (red) colors indicate positive (negative) values.

(b) Illustration of bound states and Siegert States. For the Siegert states the thickness of
the line indicates the size of the rate Γ. Blue (red) colors indicate real (imaginary) part of
the wave function. In Adobe Acrobat Reader, clicking this figure will show an animation of
the time-evolution of these states e−i (E−E0)tψ(x), where E0 = minV (x).

Figure 2.1: The gray line that encloses the gray area indi-
cates the potential V (x) [Eq. (2.3)] with parameters a = 9
and V0 = 1.
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The modulation seen in the x < a part of the continuum wave function is
due to the energy dependence of the coefficient A as given by Eq. (2.11).

The picture presented so far, where we have a set of bound states for
E <V (∞) and a continuum for E >V (∞), is the picture most people are
familiar with. Instead of having an unspecified boundary condition for
the E > 0 states at x → ∞, we could choose to impose outgoing-wave
boundary conditions. For the flat potentials considered here this can be
written as

1

ψ(x)

d

d x
ψ(x)

∣∣∣∣
x>a

= i k. (2.12)

In the example we have considered, the wave function [Eq. (2.4)] is already
written in terms of incoming and outgoing waves, so imposing outgoing
wave boundary conditions in this case simply amounts to setting D = 0.
This additional condition means that the energy is now restricted, and it
becomes discretized. In fact, since the condition D = 0 coincides with the
regularity condition for the bound states, the discretization condition for
the SS is Eq. (2.9), only now we seek solutions with E > 0. It turns out that
no real solutions with E > 0 exists, but complex solutions with ReE > 0 do
exist.

As the astute reader might have observed, by inserting the quantization
condition Eq. (2.9) in the expression for the coefficient A [Eq. (2.11)], we
see that the coefficient A has poles at energies that fulfill this quantization
condition. This can also be seen in Fig. 2.2, where the norm square of the
normalization coefficient A is shown as a function of complex energy.

The complex energy is a special property of the Siegert states; by choos-
ing the outgoing-wave boundary condition the energy turns complex. We
will use the notation

E = ReE , (2.13a)

Γ=−2ImE . (2.13b)

To interpret the imaginary part of the energy let us first consider the time-
dependent Schrödinger equation (TDSE) with a time-independent Hamil-
tonian

i
∂

∂t
ψ(x, t ) = Hψ(x, t ). (2.14)

One solution of this TDSE is

ψ(x, t ) = e−i Etψ(x), (2.15)
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Figure 2.2: Norm square of the normalization coefficient
|A|2 [Eq. (2.11)] as a function of complex energy. The dots
show the Siegert resonances at energies that fulfill Eq. (2.9),
these coincide with the poles of A. The coloring of the dots
is the same as in Fig. 2.3. The maxima of |A|2 along the real
energy axis do not exactly coincide with the real part of the
Siegert resonance energies (this is not easy to see on the
scale of the present figure).

where ψ(x) is a solution to the TISE [Eq. (2.1)]. The norm square of the
wave function decays as

∣∣ψ(x, t )
∣∣2 = e2ImEt

∣∣ψ(x)
∣∣2 (2.16)

= e−Γt
∣∣ψ(x)

∣∣2 . (2.17)

If we consider the time derivative of this norm square

∂

∂t

∣∣ψ(x, t )
∣∣2 =−Γ

∣∣ψ(x, t )
∣∣2 , (2.18)

we get a rate equation, with Γ as the rate. We can also relate this time
derivative to the probability current

∂

∂t

∣∣ψ(x, t )
∣∣2 = ∂

∂x
j (x), (2.19)

where the probability current is given by

j (x) = 1

2mi

(
ψ(x)

∂

∂x
ψ∗(x)−ψ∗(x)

∂

∂x
ψ(x)

)
. (2.20)
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Figure 2.3: Values of k for a potential with a = 9 and V0 = 1.

The lower panel shows the energy E = k2

2m . This figure is
inspired by Fig. 1 in Ref. [13].

We see that associated with the SS is a motion of probability, where the
rate Γ describes how quickly the probability is moving. This is a natural
consequence of our choice of outgoing-wave boundary conditions, since
an outgoing-wave moves outwards, so there must be an overall motion of
the wave function outwards. A fascinating aspect of this theory is that the
stationary state ψ(x) in a sense describes motion.

In addition to the bound and Siegert state solution to the TISE [Eq. (2.1)],
irregular (for E < 0) and incoming-wave (for E > 0) solutions exists. Fig-
ure 2.3 shows the energy and wave number k values for all solutions. We
could have chosen to consider C = 0 instead of D = 0. We would then
have obtained the same energies, but the k values would be inverted
kC=0 =−kD=0.
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2.1 Tunneling Potential
We have now seen the basic properties of Siegert states. In this thesis
Siegert states will be used to describe a tunneling problem, so in this
section a very simple tunneling potential will be considered.

We consider a rectangular potential of the form (see Fig. 2.4)

V (x) =





∞ x < 0,

0 0 < x < a,

V0 a < x < b,

0 b < x.

(2.21)

The full solution to the TISE [Eq. (2.1)] with this potential is

ψ(x) =





A(e i kx −e−i kx) 0 < x < a,

Ce i qx +De−i qx a < x < b,

Fe i kx +Ge−i kx b < x,

(2.22)

with

k =
p

2mE , (2.23a)

q =
√

2m(E −V0), (2.23b)

and we have already used the boundary condition Eq. (2.6) to simplify
the 0 < x < a part. We require that the wave function be continuous
and continuously differentiable at both x = a and x = b. These 4 condi-
tions together with a normalization condition specify the 5 coefficients
A,C ,D,F,G , but as before they do not put any restrictions on the energy
E , which can take any value greater than zero. Figure 2.4(a) shows these
continuum states with the normalization Eq. (2.10).

Imposing outgoing-wave boundary conditions, which in this case cor-
responds to requiring G = 0, gives the following discretization condition

e−i 2qa q +kσ

q −kσ
= e−i 2qb q +k

q −k
(2.24)

where σ= ei ka+e−i ka

ei ka−e−i ka =−i cot(ka). These SS are shown in Fig. 2.4(b). It can
be seen that the exponentially decaying part of the solution dominates in
the tunneling region for the quasi-bound states with E <V0. Fig. 2.5 shows
the wave numbers and energies of the SSs.
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(a) Continuum states, see caption of Fig. 2.1(a).

(b) Siegert states, see caption of Fig. 2.1(b). In Adobe Acrobat Reader, clicking this figure
will show an animation.

Figure 2.4: The gray line indicates the tunneling potential
[Eq. (2.22)] with parameters V0 = 1, a = 9 and b = 11.
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Figure 2.5: Values of k and E for V0 = 1, a = 9, b = 11 (same
parameters as in Fig. 2.4). k0 =

p
2mV0 is the wave number

that corresponds to the energy at the top of the barrier V0.
The energy comes in complex conjugate pairs, where one
is outgoing and one is incoming.

2.2 Summary
In this chapter we have explored the basic properties Siegert states, which
are solutions to the TISE with outgoing-wave boundary conditions. These
states have a complex energy; the imaginary part of this energy is a rate
describing how quickly the wave function moves.



3 Three-Body Coordinates

Within the SAEA a diatomic molecule is effectively a three-body system. In
this chapter the coordinates used to describe such systems in this thesis
are presented.

We consider a system of three particles labeled i = 1,2,3 with the
masses mi , charges qi and lab-frame coordinates xi . Particles 1 and 2
are nuclei, while particle 3 is an electron. The particles interact with
each other through central force potentials of the form V (

∣∣xi −x j
∣∣ , qi q j ).

They also interact with a constant external electric field F. The lab-frame
Hamiltonian is then given by1

H =
∑

i

1

2mi
∇2

xi
−

∑

i
qi F ·xi +

∑

i< j
V (

∣∣xi −x j
∣∣ , qi q j ). (3.1)

In the following we shall transform this Hamiltonian to other coordinate
systems.

3.1 Center-of-Mass Coordinates
First we introduce the center-of-mass coordinates. The center of mass is
defined by

rcm = 1

mtot

∑

i
mi xi . (3.2)

where mtot =
∑

i mi . The center-of-mass coordinates ri are then defined
relatively to this center of mass as

ri = xi − rcm. (3.3)

The center-of-mass coordinates are not independent of each other. By
1The negative sign in the field interaction term is there since this term originates

from the length gauge electric field interaction in the dipole approximation.

15
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Figure 3.1: Sketch of laboratory frame coordinates xi and
center-of-mass coordinates ri .

inserting Eq. (3.3) in Eq. (3.2) one can obtain

∑

i
mi ri = 0. (3.4)

This expresses that the center of mass is at the origin of the center-of-mass
coordinates.

In matrix-form the linear transformation between lab-frame and center-
of-mass coordinates can be expressed as

ri =
∑

j
Λi j x j (3.5)

where

ΛCOM
i j = δi j −

m j

mtot
. (3.6)

This transformation is not invertible since the center-of-mass coordinates
has less degrees-of-freedom than the lab-frame coordinates. This can also
be seen explicitly by performing row reduction of the Λ matrix. We can
transform from the lab-frame coordinates to the center-of-mass coordi-
nates, but information about the center-of-mass is lost in the transforma-
tion, such that we cannot go back.
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Figure 3.2: Sketch of the Jacobi coordinates R, r3 and rcm.

3.2 Jacobi (Relative) Coordinates
The redundancy of the center-of-mass coordinates make them an unattrac-
tive choice for calculations. We will instead introduce relative Jacobi coor-
dinates. We introduce the relative nuclear coordinate

R = x2 −x1 = r2 − r1, (3.7)

and define a set of Jacobi coordinates related to the lab-frame coordinates
through the linear transformation




rcm

R
r3


= 1

mtot




m1 m2 m3

−mtot mtot 0
−m1 −m2 −m3 +mtot







x1

x2

x3


 . (3.8)

As opposed to the center-of-mass transformation [Eq. (3.6)] this transfor-
mation is invertible with inverse

(
ΛJacobi

)−1
= 1

m1 +m2




m1 +m2 −m2 −m3

m1 +m2 m1 −m3

m1 +m2 0 m1 +m2


 . (3.9)

3.2.1 Transformation Properties of Differential
Operators

The kinetic energy in the Hamiltonian [Eq. (3.1)] is a differential operator
in the lab-frame coordinates. In order to transform this to other coordi-
nate systems we need to know how such differential operators transform.
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Suppose we have a linear coordinate transformation from the lab-frame
to some other frame

si =
∑

j
Λi j x j . (3.10)

Using the chain rule we can then write the differential operator

∂

∂(xi )l
=

∑

j

∑
n

∂(s j )n

∂(xi )l

∂

∂(s j )n
(3.11a)

=
∑

j
Λ j i

∂

∂(s j )l
(3.11b)

with the indices l ,n = x, y, z. Notice that the order of the indices of the
Λmatrix is interchanged compared to the transformation Eq. (3.10). We
see that derivatives transform with the transposed transformation matrix.
Using this we can write the kinetic energy

K =
∑

i

∑

l

1

2mi

∂

∂(ri )l

∂

∂(xi )l
(3.12a)

=
∑

i

∑

l

1

2

1

mi

∑

j
Λ j i

∂

∂(s j )l

∑

k
Λki

∂

∂(sk )l
(3.12b)

=
∑

j ,k,l

1

2

(
∑

i

1

mi
Λ j iΛki

)
∂

∂(s j )l

∂

∂(sk )l
. (3.12c)

It would be desirable if the kinetic energy in the si coordinates only con-

tains pure second derivatives d 2

d(sk )2
l

, and no cross-terms ∂
∂(s j )l

∂
∂(sk )l

, j 6= k.

That the kinetic energy is to have no cross terms is equivalent to that the
quantity in the parentheses in Eq. (3.12c)

A j k ≡
∑

i

1

mi
Λ j iΛki =

∑

i ,l
Λ j i

δi l

mi
ΛT

lk (3.13)

is diagonal A j k = δ j k m j . For appropriately mass scaled coordinates this is
equivalent to the coordinate transformation matrix being orthogonal.

For the Jacobi coordinates [Eq. (3.8)]

AJacobi = 1

mtot




1 0 0

0
(

1
m1

+ 1
m2

)
mtot 0

0 0 m1+m2
m3


 . (3.14)
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Using this result we can write the kinetic energy operator in Jacobi coordi-
nates

T = 1

2mtot
∇2

rcm
+ 1

2

(
1

m1
+ 1

m2

)
∇2

R + m1 +m2

2m3mtot
∇2

r3
(3.15a)

= 1

2mtot
∇2

rcm
+ 1

2M
∇2

R + 1

2m
∇2

r (3.15b)

where we defined the reduced masses

M = 1
1

m1
+ 1

m2

= m1m2

m1 +m2
, (3.16a)

m = m3
m1 +m2

mtot
, (3.16b)

and the mass-scaled coordinate

r = m3

m
r3. (3.17)

3.2.2 Potential Terms
The potentials we consider fall into two types; central forces acting be-
tween the particles dependent on the distance between the particles and
the product of their charges

∑

i< j
V (

∣∣xi −x j
∣∣ , qi q j ),

and interaction with an external electric field

−F ·
∑

qi xi .

Using the inverse Jacobi transformation [Eq. (3.9)] it can be shown that

x2 −x1 = R (3.18a)

x3 −x1 = r+ m2

m1 +m2
R (3.18b)

x3 −x2 = r− m1

m1 +m2
R. (3.18c)

Note that the center-of-mass coordinate rcm does not enter in any of these
relative quantities. The field term can be written

−F ·
∑

qi xi =−F ·
(
∑

i
qi rcm + q2m1 −q1m2

m1 +m2
R−

[
q1 +q2

m1 +m2
− q3

m3

]
mr

)

= F ·
(
−

∑

i
qi rcm +QR+qr

)
, (3.19)
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where we introduced the effective charges

Q =
(

q1

m1
− q2

m2

)
M , (3.20a)

q =
(

q1 +q2

m1 +m2
− q3

m3

)
m. (3.20b)

3.2.3 Total Hamiltonian
The center-of-mass coordinate rcm additively separates from the R and r
coordinates in both the kinetic [Eq. (3.15b)] and potential energy [Eq. (3.19)].
This means that we can use a product ansatz to separate this coordinate
from the others. The remaining Hamiltonian takes the form

H = 1

2M
∇2

R + 1

2m
∇2

r +F · (QR+qr
)+V

(|R| , q1q2
)

+V

(∣∣∣∣r+
m2

m1 +m2
R

∣∣∣∣ , q1q3

)
+V

(∣∣∣∣r−
m1

m1 +m2
R

∣∣∣∣ , q2q3

)
. (3.21)

This is the Hamiltonian that we will work with in the remainder of the
thesis.



4 Tunneling Ionization of
Molecules

In this chapter we consider a diatomic molecule exposed to a static electric
field in the single-active electron approximation. Here we will consider a
one-dimensional (1D) model of a molecule, with one electronic and one
nuclear degree of freedom. In the next chapter a full 3D theory will be
developed.

4.1 Simple Picture of Tunneling Ionization
Before considering the full theory in all its gory details, let us first look at
the process of tunneling ionization in a simple picture. Fig. 4.1 shows a 1D

Re(ψ)

V

F = 0

xi

Figure 4.1: Field-free wave function ψ for a fixed R posi-
tioned at its energy in the molecular potential V as a func-
tion of x. xi marks the left most classical turning point,
where V (xi ) = E . The gray area indicates the classically
forbidden region.

21
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Figure 4.2: Wave function ψ for a fixed R positioned at its
energy E as a function of x in the molecular potential V
modified by the linear field potential F x. xi and xo marks
the inner and outer classical turning points respectively.
In Adobe Acrobat Reader, clicking this figure will show an
animation of the time-evolution of this state e−i (E−E0)tψ,
where E0 = minx V (x,R0).

cut of a typical potential felt by an electron in a diatomic molecule for a
fixed internuclear distance R. The wave function ψ is primarily located
in the wells of the potential, and decays exponentially in the classically
forbidden regions. Fig. 4.2 illustrates what happens if a static electric field
is applied to this molecule. The addition of the linear field potential F x
causes the potential to bend down for negative x. This opens a classically
allowed region at sufficiently large negative x, into which the wave func-
tion can tunnel through the tunneling region delimited by the classical
turning points xi and xo . The shown wave function is chosen to have an
outgoing-wave boundary condition, since we only want to consider an
electron leaving the molecule, not one that enters it.

4.2 Formal Theory
We will now develop a detailed theory for tunneling ionization in molecules.
Using the Jacobi coordinates from Chap. 3 we can write the TISE

[H(z,R)−E(F )]Ψ(z,R) = 0, (4.1)
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with the Hamiltonian

H(z,R) =− 1

2M

d 2

dR2
− 1

2m

d 2

d z2
+FQR +F qz +U (R)+V (z,R), (4.2)

where we have changed the notation for the potentials slightly from Chap. 3,
such that the interaction between the nuclei is described by the potential
U (R), and the interaction between the nuclei and the electron has been
collected in the potential

V (r,R) =V1

(
r+ m2

m1 +m2
R

)
+V2

(
r− m1

m1 +m2
R

)
. (4.3)

We wish to solve this TISE [Eq. (4.1)] subject to outgoing-wave bound-
ary conditions in the electronic coordinate z. This choice of boundary
condition means that we want to find a Siegert state. As described in
Chapter 2 such a state has a complex energy, and we normalize it by

∫ ∞

0

∫ ∞

−∞
ψ2(z,R) d z dR = 1. (4.4)

This normalization contains no complex conjugation, which is somewhat
unconventional, but it is often used in the context of Siegert states (see the
discussion after Equation (23) in Ref. [11]).

We assume that the nuclei cannot pass through each other, so we
restrict the nuclear coordinate to 0 < R and impose the zero boundary
condition

Ψ(z,R = 0) = 0. (4.5)

Before the exact form of the outgoing-wave boundary conditions in the
electronic coordinate can be specified we must first consider the asymp-
totic behaviour of Eq. (4.1).

4.2.1 Large |z| Limit
We assume that in the limit where the electron is far away from the molecule,
the potential describing the electron-nuclear interaction is dominated by
the monopole term of the multipole expansion

V (z,R)|r→∞ =− Z

|z| +O(z−2), (4.6)
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where Z = q1 +q2 is the total charge of the system left behind when the
electron has left. The only thing that couples the electronic z and nuclear
R degrees of freedom is this potential, so in this asymptotic region the
Hamiltonian additively separates in electronic z and nuclear R coordi-
nates, and by insertion of the ansatz Ψ(z,R) = f (z)g (R) in Eq. (4.1) we
obtain the separated equations

[
− 1

2m

d 2

d z2
+F qz − Z

|z| −Ez

]
f (z) = 0, (4.7a)

[
− 1

2M

d 2

dR2
+FQR +U (R)−ER

]
g (R) = 0, (4.7b)

with the separation constants

E = Ez +ER . (4.8)

Nuclear Problem

We impose the zero boundary condition for the nuclear equation (4.7b)

g (R = 0) = 0. (4.9)

Depending on the form of U (R) Eq. (4.7b) can have bound solutions,
continuum solutions or both. For the bound states we use the index
v = 0,1, . . . , and write the energy ER = Ev . The continuum states we index

by their wave number ER = k2

2M .

ER = Ev v = 0,1, . . . Bound states (4.10a)

ER = k2

2M
k ≥ 0 Continuum states (4.10b)

where we assumed1

lim
R→∞

FQR +U (R) = 0. (4.11)

The corresponding states are then labelled by

gv (R) Bound states (4.12a)

g (R,k) Continuum states. (4.12b)

1If the limit on the left-hand side is finite, the zero point of the energy can be shifted
such that the limit becomes 0. If the limit is ∞ there is no continuum. If the limit is −∞
there are no bound states, but this case has not been considered in this thesis.



4.2 Formal Theory 25

The continuum states correspond to a molecule that is dissociating after
the electron has left. We choose the following orthonormality relations

∫ ∞

0
gv (R)gv ′(R)dR = δv v ′ , (4.13a)

∫ ∞

0
g (R,k)g (R,k ′)dR = 2πδ(k −k ′), (4.13b)

∫ ∞

0
gv (R)g (R,k)dR = 0. (4.13c)

The normalization of the continuum states g (R,k) is equivalent to [see
App. D]

g (R,k)R→∞ = 2sin(kR +δ). (4.14)

These conditions completely specify the solutions to the nuclear problem.

Electronic Problem

Now for the electronic problem. For F > 0 the electrons are ejected in the
−z direction, so we want to look at the asymptotic of Eq. (4.7a) in that limit.
Consider the transformed coordinate z̄ =−z in terms of which we have

[
d 2

d z̄2
+2mF qz̄ +2m

Z

|z̄| +2mEz

]
f (−z̄) = 0. (4.15)

By applying the results of App. A to this equation we get that the leading
order term of the asymptotic outgoing-wave solution to Eq. (4.7a) takes
the form

f (z)|z→−∞ = m1/4

(2F q(−z))1/4
exp

[
i

(2m)1/2

(F q)1/2

(
2

3
F q(−z)3/2 +Ez(−z)1/2

)]
.

(4.16)

This expression defines the outgoing-wave boundary condition, which
was mentioned after Eq. (4.1). In the z →∞ limit we require that the wave
function should be regular and decay

f (z)|z→∞ = m1/4

(2F qz)1/4
exp

[
− (2m)1/2

(F q)1/2

(
2

3
F qz3/2 −Ez z1/2

)]
. (4.17)

Note that Eqs. (4.16) and (4.17) represent particular choices of boundary
conditions. We could have chosen opposite signs in the exponents, or
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some linear combination of the shown functions and the ones with oppo-
site sign in the exponents. This completes the formulation of boundary
conditions, and we can write the full wave function in the asymptotic
region as

Ψ(z,R)|z→−∞ =
∑
v

Cv gv (R) fv (z)+
∫ ∞

0
C(k)g (R,k) f (z,k)

dk

2π
, (4.18)

where Cv and C(k) are asymptotic expansion coefficients. By projecting
on the gv (R) or g (R,k) states and using the orthonormality of these we
can express the asymptotic coefficients in terms of the wave function

Cv = 1

fv (z)

∫ ∞

0
gv (R)Ψ(z,R)dR

∣∣∣∣
z→∞

, (4.19a)

C(k) = 1

f (z,k)

∫ ∞

0
g (R,k)Ψ(z,R)dR

∣∣∣∣
z→∞

. (4.19b)

We will use the notation C (ER ) to indicate either of these

C (ER ) = 1

f (z)

∫ ∞

0
g (R)Ψ(z,R)dR

∣∣∣∣
z→∞

, (4.20)

where g (R) can be either gv (R) or g (R,k).
The full wave function is thus expanded in terms of nuclear bound

and continuum channels indexed by v and k respectively. As we saw in
Chapter 2 the SS has a probability current that satisfies an equation of
continuity [9]

∂

∂z
jz(z,R)+ ∂

∂R
jR (z,R) = Γ |Ψ(z,R)|2 , (4.21)

where the currents are defined by

jz(z,R) = 1

i 2m

(
Ψ
∂

∂z
Ψ∗−Ψ∗ ∂

∂z
Ψ

)
, (4.22a)

jR (z,R) = 1

i 2M

(
Ψ

d

dR
Ψ∗−Ψ∗ d

dR
Ψ

)
. (4.22b)

By inserting the wave function [Eq. (4.18)] into Eq. (4.21) and integrating
over R and some range of z one obtains

[∑
v
|Cv |2 jv (z,R)+

∫ ∞

0
|C (k)|2 j (z,k)

dk

2π

]zmax

zmin

= Γ · [1+O(F )], (4.23)
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Figure 4.3: Illustration of partial rates.

where the channel currents are defined by

jv (z) = 1

i 2m

(
fv (z)

d

d z
f ∗

v (z)− f ∗
v (z)

d

d z
fv (z)

)
(4.24a)

j (z,k) = 1

i 2m

(
f (z,k)

d

d z
f ∗(z,k)− f ∗(z,k)

d

d z
f (z,k)

)
. (4.24b)

The region in z we integrate over is chosen such that zmin ¿ 0 ¿ zmax and∫ zmax
zmin

∫ ∞
0 |Ψ(z,R)|2 dRd z = 1+O(F ). The contribution from the positive

zmax can be disregarded since the wave function decays exponentially in
this region. Inserting the asymptotic expansion Eq. (4.16) in the channel
current [Eq. (4.24a)] one can show that for |ReEz |

2F q ¿ |z| ¿ F q
8m(ImEz )2 the

asymptotic current is

j (z)|z<0 = 1, (4.25)

where j (z) indicates either jv (z) or j (z,k). The pre-exponential factor
in Eq. (4.16) was in fact chosen such that the channel current takes this
particularly simple form. From this we see that

Γ|F→0 =
∑
v
|Cv |2 +

∫ ∞

0
|C (k)|2 dk

2π
. (4.26)

We can define the norm square of the individual asymptotic expansion
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coefficients as partial rates

Γv = |Cv |2 , (4.27a)

P (k) = |C (k)|2 , (4.27b)

where the asymptotic coefficients were written in Eqs. (4.20). The first of
these we can think of as a rate for going to the vibrational state v of the
molecular ion, see Fig. 4.3. The latter of these describe the distribution of
probability current as a function of the energy of dissociating nuclei and
will be called the kinetic energy release (KER) spectrum. It is convenient
to write Eq. (4.26) in the form

Γ(F )|F→0 = Γbound +Γcont, (4.28a)

Γbound ≡
∑
v
Γv , (4.28b)

Γcont ≡
∫ ∞

0
P (k)

dk

2π
. (4.28c)

The rate and these partial rates are the main observables of interest. For
these we shall now describe approximate expressions.

4.3 Weak-Field Asymptotic Theory
Weak-field asymptotic theory (WFAT) provides an analytic expression for
the rate in the weak-field limit, based entirely on properties of the field-free
state. In this section we will derive the WFAT expressions. The basic idea
of the, rather technical, derivation is to match the field-free and weak-field
wave functions in a matching region where −z has large values, but not
too large, such that the potentials in the two cases are similar. Since the
electron is ejected in the negative z direction, we consider z < 0 in this
section. The derivation follows that given in Refs. [1, 11].

In the field-free case F = 0 the asymptotic wave function is of the form

Ψ(z,R)||z|→∞ =
∑
v

Dv gv (R) f (0)
v (z)+

∫ ∞

0
D (k)g (R,k) f (0)(z,k)

dk

2π
, (4.29)

where Dv ,D(k) are field-free asymptotic coefficients and f (0)(z) is the
leading order term of the asymptotic solution to Eq. (4.7a) [see App. A]

f (0)(z) = |z|mZ /κ e−κ|z|, κ =
√
−2mE (0)

z , (4.30)
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Matching region

Potentials similar
F = 0 asymptotic valid F = 0

F small

z
0Ez

F

Z
Ez

Figure 4.4: The potential F z− Z
|z|−Ez of Eq. (4.7a) is shown

as a function of z, for F = 0 and a small value of F . On the
z axis the values Z/Ez and Ez/F are indicated. These are
quite close to the inner and outer classical turning points
respectively, in fact in the F → 0 limit they coincide with
these. Different regions of z are indicated by colored bands
around the z axis. These regions are all ’fuzzy’, since they
are defined by relations of the type z À or z ¿, and a defi-
nite limit to them cannot be found, which is why they are
shown with a color gradient. In the |z| ¿ |Ez |/F (purple)
region, the potentials are similar. The F = 0 asymptotic
Eq. (4.30) is valid in the (blue) region |z| À Z/ |Ez |. The
overlap of these regions is the (green) matching region.

where E (0)
z is the field-free electronic energy. The field-free asymptotic

coefficients can be expressed by the integrals

Dv = 1

f (0)
v (z)

∫ ∞

0
gv (R)Ψ(z,R)dR

∣∣∣∣∣|z|→∞
(4.31a)

D (k) = 1

f (0)(z,k)

∫ ∞

0
g (R,k)Ψ(z,R)dR

∣∣∣∣
|z|→∞

. (4.31b)

The key element in the WFAT is the so-called connection formula,
which relates the field free asymptotic coefficients Dv ,D (k) with their
weak-field counterparts Cv ,C(k). The link between these is established
by matching the field-free and weak-field wave functions in a matching
region [see Fig. 4.4]. The matching is possible when −F qz ¿ |Ez |, since
then the field-free and weak-field potentials are almost identical, and
consequently the wave functions locally of the same form. In order for us
to use the asymptotic form Eq. (4.16) we must additionally require that
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Matching region

F > 0 asymptotic valid
F > 0 WKB valid

F small

z
0Ez

F

Z
Ez

Figure 4.5: Same as figure 4.4, only with other regions high-
lighted. In the F > 0 case the WKB is valid everywhere,
except near the turning points, and the weak-field asymp-
totic expansion Eq. (4.16) is valid away from the outer turn-
ing point.

Z ¿−z |Ez |. The matching region is thus delimited by the requirements

Z

|Ez |
¿−z ¿ |Ez |

F q
. (4.32)

For sufficiently weak F such a matching region exists, and it is for these
small F that WFAT is applicable. From Eq. (4.32) we see that the for WFAT
to be applicable F must fulfill

F ¿ E 2
z

q Z
. (4.33)

When matching the field-free and weak-field wave functions in the
matching region (4.32) we can use Eq. (4.30) for the field-free wave func-
tion. The asymptotic of the weak-field state [Eq. (4.16)] is, however, not
valid here, since the matching region is within the tunneling region of the
weak-field state (see Fig. 4.5). In order to link the field-free and weak-field
wave functions we will first use a WKB2 approximation [see App. B] for the
weak-field state in the matching region, and match this with the field-free
state. A weak-field WKB function will then be matched to the asymptotic
weak-field state [Eq. (4.16)]. The two WKB functions cannot be connected
on the real axis, since WKB fails at the classical turning point between
the two regions, but this problem can be circumvented by an analytic
continuation of the WKB wave function into the complex plane z around
the turning point [see Fig. 4.6].

2Wentzel-Kramers-Brillouin (WKB) or semi-classical theory is covered in many text-
books on quantum mechanics, e.g. Landau & Lifshitz [14] or Griffths [15].
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F > 0 asymptotic valid
WKB not valid

Matching region
Re z

Im
z

0Ez
F

Z
Ez

Figure 4.6: Complex z plane. The WKB is valid everywhere
except near the classical turning points. The region where
WKB is not valid is indicated by the blue circles. By analyti-
cally continuing the WKB into the complex plane around
the turning points, the coefficient found from matching
with the field-free state in the matching region can be re-
lated to the weak-field asymptotic state on the far side of
the outer turning point.

4.3.1 WKB Wave Function
We now derive the WKB wave function. We expand the electronic energy
to first order in field strength

Ez = E (0)
z −µF +O(F 2), (4.34)

where the dipole moment can be calculated from the field-free wave func-
tion through the integral

µ=−
[∫ ∞

0
dR

∫
d z (QR +qz)Ψ2(z,R)−

∫ ∞

0
dR QRg 2(R)

]
. (4.35)

It is convenient to define the following scaled quantities

z̃ =−2
p

mz, (4.36a)

Z̃ =p
mZ , (4.36b)

F̃ = qp
m

F, (4.36c)

µ̃=
p

m

q
µ, (4.36d)

κ̃ = 1p
m
κ. (4.36e)

We cast Eq. (4.7a) using these quantities in the form used in WKB
[

d 2

d z̃2
+p2(z̃)

]
f(z̃) = 0, (4.37)
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where the classical momentum is of the same form is in Ref. [11]

p2(z̃) = F̃ z̃

4
+ Ez

2
+ Z̃

|z̃| +O(z̃−2). (4.38)

The WKB2 wave function is given by [Eq. (B.11)]

f(z̃) = CWKBe i S(z̃)

p1/2(z̃)
, (4.39)

where the classical action is defined by

S(z̃) =
∫ z̃

z̃o

p(z̃ ′)d z̃ ′. (4.40)

The lower limit of the integral can in principle be chosen arbitrarily, differ-
ent choices of this can be absorbed into the constant CWKB. To fix CWKB

we will make a choice of this limit, and a convenient choice is the outer
turning point z̃o of the potential in Eq. (4.7a), which fulfills

p(z̃o) = 0. (4.41)

The WKB is accurate when the condition
∣∣∣∣

d

d z̃

1

p(z̃)

∣∣∣∣¿ 1 (4.42)

is fulfilled. In order to match the WKB wave function [Eq. (4.39)] with the
asymptotics of the wave function we will need to simplify the WKB wave
function by considering the weak-field and large z̃ limits.

It is convenient to introduce the re-scaled variable

x = F̃ z̃

κ̃2
=−2

mqF z

κ2
, z̃ = κ̃2x

F̃
, (4.43)

where κ was defined in Eq. (4.30). In terms of this variable the classical
momentum [Eq. (4.38)] takes the form

p2(x) = κ̃2x

4
+
−1

2 κ̃
2 − µ̃F̃ +O(F 2)

2
+ F̃ Z̃

κ̃2x
+O(z̃−2). (4.44)

We now consider the limit of small F , and simultaneously the limit of large
z̃, since we only care about what happens in the asymptotic region

F → 0, z̃ =O(F−1), x =O(F 0). (4.45)
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In this limit the classical momentum simplifies to

p2(x) = κ̃2

4

[
x −1+ 2

κ̃2

(
−µ̃+ 2Z̃

κ̃2x

)
F̃

]
+O(F 2). (4.46)

The outer turning point z̃o [Eq. (4.41)] is in this limit given by3

xo = 1, z̃o = κ̃2

F̃
. (4.47)

The condition Eq. (4.42) for the applicability of WKB reduces in this limit
to

|x −1|À F̃ 2/3

κ̃2
, (4.48)

which means the WKB wave function [Eq. (4.39)] is valid when we are not
too close to the outer turning point xo = 1.

In the limit (4.45) the action [Eq. (4.40)] takes the form

S(z̃) = κ̃3

2F̃

[
2

3
(x −1)3/2 − 2F̃

κ̃2

(
µ̃(x −1)1/2 − 2Z

κ̃2
arctan(x −1)1/2

)
+O(F 2)

]
.

(4.49)

WKB Wave Function in the Matching Region

We now consider the WKB wave function in the matching region [Eq. (4.32)]
at intermediate z̃. In terms of x the matching region is delimited by
4F̃ Z̃
κ̃4 ¿ x ¿ 1. In this region the action [Eq. (4.49)] takes the form

S(z̃) = i
κ̃3

2F̃

[
−2

3
+x − 2F̃

κ̃2

(
µ̃+ Z̃

κ̃2
ln

x

4

)
+O(F 2)

]
(4.50a)

=−i
κ̃3

3F̃
+ i

κ̃z̃

2
− i κ̃µ̃− i

Z̃

κ̃
ln

F̃ z̃

4κ̃2
+O(F 1). (4.50b)

Note that the action is purely imaginary, since the matching region is
located in the tunneling region of the weak-field state. The classical mo-
mentum is given in this region by p(z) = i κ̃/2, which is most easily seen

by calculating p(z̃) = S′(z̃) and using 2Z̃
|Ez | ¿ z̃. By matching the WKB wave

3The inner turning point is also defined by Eq. (4.41), but since it is located at small z̃,
it cannot be described in the present limit. The electronic Schrödinger Equation (4.7a) is
anyways asymptotic, so we cannot trust anything for small z̃.
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function [Eq. (4.39)] in this region to the asymptotic of the field-free wave
function [Eq. (4.30)] we obtain

CWKB = D · (2
p

m)−Z̃ /κ̃
(κ̃

2

)1/2

exp

(
− κ̃3

3F̃
− κ̃µ̃− Z̃

κ̃
ln

F̃

4κ̃2
+ i

π

4

)
, (4.51)

where D indicates either Dv or D(k).

WKB Wave Function Beyond the Outer Turning Point

The WKB wave function can be analytically continued from the matching
region x ¿ 1 to the asymptotic region x À 1, where the asymptotic wave
function (4.16) is applicable. The analytic continuation is done through
the upper half plane of the complex x plane, staying away from the outer
turning point, such that the condition Eq. (4.42) is fulfilled. Since the WKB
wave functions in the regions are connected, the constant CWKB appearing
in Eq. (4.39) is the same in both cases. In the x À 1 region the action
[Eq. (4.49)] takes the form

S(z̃) = κ̃3

2F̃

[
2

3
x3/2 −x1/2 − 2F̃

κ̃2

(
µ̃x1/2 − πZ̃

κ̃2

)
+O(F 2)

]
(4.52)

= F̃ 1/2z̃3/2

3
−

(κ̃2

2
+ F̃ µ̃

)(
z̃

F̃

)1/2

+ πZ̃

κ̃
+O(F 1). (4.53)

The classical momentum takes the form p(z̃) = S′(z̃) = F̃ 1/2 z̃1/2

2 . By match-
ing the WKB wave function [Eq. (4.39)] with the F 6= 0 asymptotic [Eq. (4.16)]
we obtain

C =CWKB
21/2

m1/4
exp

(
i
πZ̃

κ̃

)
. (4.54)

where C indicates either Cv or C(k).
We now insert the WKB coefficient CWKB that was found by matching

the WKB to the field-free state in the matching region [Eq. (4.51)] in the
above expression, which yields

C = D
21/2

m1/4

(κ̃
2

)1/2 (
2κ̃2

p
mF̃

) Z̃
κ̃

exp

(
− κ̃3

3F̃
− κ̃µ̃+ i

π

4
+ i

πZ̃

κ̃

)
. (4.55)

This equation is called the connection formula, and it is the central result
of WFAT. It links the field free asymptotic coefficients D to the weak-field
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asymptotic coefficients C . Written in terms of the original quantities [see
Eq. (4.36)] it is

C = D
(κ

m

)1/2
(

2κ2

mF q

)mZ
κ

exp

(
− κ3

3mF q
− 1

q
κµ+ i

π

4
+ i

mπZ

κ

)
. (4.56)

The partial rates [Eqs. (4.27)] in WFAT can be written

ΓWFAT
v =G2

vWv (F ) [1+O(F )] , (4.57a)

P WFAT(k) =G2(k)W(F,k) [1+O(F )] , (4.57b)

where the field factor W(F ) and structure factors Gv ,G(k) are defined by

W(F ) = κ
m

(
2κ2

mF q

)2 mZ
κ

exp

(
− 2κ3

3mF q

)
, (4.58a)

Gv = Dv e−κµ, (4.58b)

G(k) = D(k)e−κµ, (4.58c)

where W(F ) can be either Wv (F ) or W(F,k). The WFAT partial rates [Eq.
(4.57)] are thus partitioned into two factors. The structure factor is obtain-
able from the field free state and describes the structure of this, while the
field factor contains all the field dependence. The total WFAT rate can be
found by

ΓWFAT(F ) =
∑
v
ΓWFAT

v +
∫ ∞

0
P WFAT(k)

dk

2π
. (4.59)

4.4 Born-Oppenheimer Approximation
The Born-Oppenheimer (BO) approximation is very widely used in the
treatment of molecules. It is based on the notion, that since the nuclei
are a lot heavier than the electrons, the motion of the nuclei should be a
lot slower than that of the electrons. The nuclei therefore do not see the
detailed motion of the electrons, but only experience a mean field based
on the electrons average locations.

Formally the BO approximation appears in the limit of infinite nu-
clear mass m1,m2 → ∞. In this limit the reduced electron mass and
charge becomes m = 1 = q . The wave function obtains a separable form
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ΨBO(z,R) =ψe (z;R)χ(R), where the components fulfill the BO equations

[
−1

2

d 2

d z2
+F z +V (z,R)−Ee (R;F )

]
ψe (z;R) = 0, (4.60a)

[
− 1

2M

d 2

dR2
+FQR +U (R)+Ee (R;F )−EBO(F )

]
χ(R) = 0. (4.60b)

We impose the zero-boundary condition

χ(R = 0) = 0, (4.61)

for the nuclear problem [Eq. (4.60b)], and outgoing-wave boundary condi-
tions for the electronic problem [Eq. (4.60a)]. The electronic BO problem
[Eq. (4.60a)] is seen to be on the same form as the asymptotic electronic
Eq. (4.7a) for large |z|, so we can use the same asymptotic expansion
[Eq. (4.16)], only we replace the energy Ez with the electronic energy
Ee (R;F ) and put m = 1, q = 1. This allows us to write the electronic wave
function for F > 0 in the form

ψe (z;R)|z→−∞ =C(R) f (z;R), (4.62)

where C(R) are asymptotic coefficients and the outgoing-wave is given by

f (z;R) = 1

(2F |z|)1/4
exp

[
i

21/2

F 1/2

(
2

3
F |z|3/2 +Ee (R;F ) |z|1/2

)]
. (4.63)

This choice of outgoing-wave boundary condition means that once again
we have a SS with energy Ee (R;F ) = E (R;F )− i

2Γe (R;F ). The total rate
of the BO state is given by the imaginary part of the BO energy as ΓBO =
−2ImEBO(F ). This rate we can think of as an average of the electronic rate
Γe (R;F ). In fact, by projecting Eq. (4.60b) on χ∗(R) we obtain

EBO(F ) =
∫ ∞

0
χ∗(R)

[
− 1

2M

d 2

dR2
+FQR +U (R)+Ee (R;F )

]
χ(R)dR.

(4.64)

Since the kinetic energy is a Hermitian operator its expectation value with
respect to any state is real, even for a complex state4. Thus the only thing

4This can be shown by the following manipulation of the inner product,
where K is Hermitian

〈
χ

∣∣K
∣∣χ

〉 = 1
2

(〈
χ

∣∣K
∣∣χ

〉+〈
Kχ

∣∣χ
〉) = 1

2

(〈
χ

∣∣K
∣∣χ

〉+〈
χ

∣∣K
∣∣χ

〉∗) =
Re

(〈
χ

∣∣K
∣∣χ

〉)
.



4.4 Born-Oppenheimer Approximation 37

imaginary on the right hand side of Eq. (4.64) is in the electronic energy
and we can write

ΓBO(F ) =−2ImEBO(F ) =
∫ ∞

0

∣∣χ(R)
∣∣2
Γe (R;F )dR. (4.65)

There is a flux of probability associated with the SS, through which we
can relate the electronic rate to the asymptotic coefficient [see Sec. 4.2.1]

Γe (R;F )|F→0 = |C (R)|2 . (4.66)

We wish to find expressions for the partial rates in the BO approxima-
tion, so we insert the BO wave function in the expression for the asymptotic
coefficients [Eq. (4.20)]

C BO(ER ) =
∫ ∞

0
g (R)C (R)

f (z;R)

f (z)
χ(R)dR

∣∣∣∣
z→∞

. (4.67)

If we assume that the electronic energy Ez is the same as the electronic
energy Ee (R;F ) this reduces to

C BO(ER ) =
∫ ∞

0
g (R)C(R)χ(R)dR. (4.68)

Note that there is no explicit reference to the electron coordinate in this ex-
pression. We will use this expression to define BO partial rates analogously
to Eq. (4.27)

ΓBO
v =

∣∣C BO
v

∣∣2
, (4.69a)

P BO(k) =
∣∣C BO(k)

∣∣2
, (4.69b)

where

C BO
v =

∫ ∞

0
gv (R)C(R)χ(R)dR, (4.70a)

C BO(k) =
∫ ∞

0
g (R,k)C(R)χ(R)dR. (4.70b)

4.4.1 Reflection Principle
In order to evaluate the integrals in Eqs. (4.70) we can use the so-called
reflection principle (RP) [16, 17]. This principle essentially states, that
the spectrum can be obtained by reflection of the wave function times
some field coupling factor in the potential of the molecular ion. It can be
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formulated for bound state integrals [Eq. (4.70a)], but it does not appear
to be accurate in this case, so we will only formulate it for the continuum
integral Eq. (4.70b). Central to the reflection principle is the reflection ap-
proximation [see App. C], which states that the continuum state solutions
g (R,k) of the asymptotic nuclear problem Eq. (4.7b) can be approximated
by [Eq. (C.22)]

g (R,k) =
√

−2π
dRt

dk
δ(R −Rt ), (4.71)

where Rt is the turning point5 of the potential U (R) of Eq. (4.7b) defined
by

U (Rt ) = k2

2M
. (4.72)

The reflection approximation is exact in the limit M →∞, so it is compati-
ble with the BO approximation which also appears in the limit of infinite
nuclear mass. Using the reflection principle we can write the spectrum
[Eq. (4.69b)] as

P BO+RP(k) =−2π
dRt

dk
Γe (Rt ;F )

∣∣χ(Rt )
∣∣2 . (4.73)

The reflection principle thus predicts that the spectrum is given by the
product of some Jacobian factor, the nuclear wave function and the elec-
tronic rate, evaluated in the R that corresponds to k through reflection in
U (R).

The reflection principle has been used in a number of time-dependent
cases [16–19]. If the time-scale on which the laser moves electrons is
shorter the time scale of nuclear motion, we can assume that the nuclear
wave function makes a Franck-Condon transition to an exited electronic
state. The probability amplitude in this exited state is then given by the
product of the nuclear wave function and a dipole coupling factor. If we
assume the exited electronic state is dissociative, the spectrum can then
be obtained through an integral of the form (C.1), such that the reflection
approximation can be used. The variations of the dipole coupling factor
with R are typically not very large, and do not have the violent exponential
dependence on R that the electronic rate Γe (R) has. We therefore approxi-
mate the dipole coupling as constant, and thus obtain that the spectrum

5We assume that there is only one turning point for the k considered.
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directly reflects the initial nuclear wave function. In our time-independent
tunneling case the exponential dependence of Γe (R) on R means that we
cannot make such an approximation, and must consider the effect of the
R dependence of Γe (R).

4.4.2 WFAT in BO
The WFAT can also be applied within the framework of BO. Specifically, we
can employ it to the electronic equation (4.60a) to find an approximation
for the electronic rates [Eq. (4.66)]. This is in fact exactly what was done
in Ref. [11], where the frozen-nuclei approximation was used. First we
note that the field-free electronic wave function can be asymptotically
expanded

ψ(0)
e (z;R)|z→∞ = D(R) f (0)(z;R), (4.74)

where D(R) are the field-free asymptotic expansion coefficients and

f (0)(z;R) = z Z /κ(R)e−κ(R)z , κ(R) =
√
−2Ee (R;F = 0). (4.75)

The electronic energy is expanded in field strength

Ee (R;F ) = Ee (R;0)−µ(R)F +O(F 2), (4.76)

where

µ(R) =−
∫ ∞

−∞
ψ(0)

e (z;R)qzψ(0)
e (z;R)d z. (4.77)

The WFAT can now be developed in the same way as in Sec. 4.3. This
yields

ΓWFAT
e (R) =G2(R)W(F ;R), (4.78)

where the field factor W(F ;R) and structure factor G(R) are defined by

W(F ;R) =κ(R)

(
2κ2(R)

F

) 2Z
κ(R)

exp

(
−2κ3(R)

3F

)
(4.79a)

G = D(R)e−κ(R)µ(R). (4.79b)

The total BO rate with this partial rate is then

ΓWFAT in BO(F ) =
∫ ∞

0

∣∣χ(R)
∣∣2
ΓWFAT

e (R) dR. (4.80)
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4.4.3 Simple Model for Location of Spectrum
Maximum

Combining the reflection principle with WFAT in BO we can build a simple
model that predicts the energy at which the spectrum has its maximum.

First we write up approximations for the nuclear wave function. We
can describe the nuclear wave function in two regions. Either close to the
equilibrium distance R0, or at large R . In the first region we do a harmonic
expansion of the potential around R0 and obtain a Gaussian nuclear wave
function

χGauss(R) =χ0 exp
(−b(R −R0)2) , (4.81)

where χ0 is a constant of normalization6, b = 1
2

√
M [U ′′(R0)+E ′′

e (R0)] and
R0 is the minimum location of the BO potential, determined by U ′(R0)+
E ′

e (R0) = 0.
In the second region at large R we are in the classically forbidden region

of the BO potential: U (R)+Ee (R;F )−EBO(F ) > 0. Here we can describe
the nuclear wave function χ(R) by the WKB wave function [see App. B]

χWKB(R) = C

p1/2
e−∫

p dR , (4.82)

where the classical momentum is given by p =p
2M(U (R)+Ee (R;F )−EBO).

In the reflection approximation [Eq. (4.73)] the spectrum is determined
by the product of the electronic rate and the nuclear wave function. Both
the Gaussian and WKB wave functions are partitioned into an exponential
and a pre-exponential part. The same is the case for the electronic WFAT
rate [Eq. (4.78)]. We can therefore partition the spectrum in the same way

P BO+RP(k) = a(Rt )exp[e(Rt )] (4.83a)

eGauss(R) =−2
κ(R)3

3F
−2b(R −R0)2, (4.83b)

eWKB(R) =−2
κ(R)3

3F
−2

∫
p dR. (4.83c)

where the Jacobian factor is considered as part of the pre-exponential
factor a(R). We now make two additional approximations. First we choose
to only consider the exponential dependence of Eq. (4.83), so we assume

6χ0 =
(

2b
π

)1/4
, but the normalization isn’t important here.
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the pre-exponential factor is constant. Second we assume that the elec-
tronic energy Ee (R;F ) and its derivatives, as well as EBO(F ), only has a
weak dependence on F , and replace these by their values at F = 0. The
only dependence on F in the exponents (4.83) is then contained in the F−1

factor of the first term. The only dependence on M is the
p

M factor in the
second term.

We wish to determine the Rt for which the spectrum has its maximum.
If we only consider the exponential dependence of the spectrum this
maximum is determined by the condition

∂

∂R
e(R)|R=Rmax = 0. (4.84)

The derivatives of the exponents are given by

∂

∂R
eGauss(R) = 2

1

F
κ(R)

∂

∂R
Ee (R;0)−2

p
M

√
U ′′(R0)+E ′′

e (R0)(R −R0),

(4.85a)

∂

∂R
eWKB(R) = 2

1

F
κ(R)

∂

∂R
Ee (R;0)−2

p
M

√
2(U (R)+Ee (R;F )−EBO).

(4.85b)

We define the functions

f Gauss
0 (R) ≡

p−2Ee (R;0)√
U ′′(R0)+E ′′

e (R0,0)

1

R −R0

∂

∂R
Ee (R;0), (4.86a)

f WKB
0 (R) ≡

√
−Ee (R;0)

U (R)+Ee (R;0)−EBO

∂

∂R
Ee (R;0). (4.86b)

These functions only depend on R and are independent of F and M . The
condition for maximum of the spectrum (4.84) is equivalent with

f0(Rmax) = F
p

M . (4.87)

Inverting the f0(R) function then gives the location of the maximum Rmax

as a function of F
p

M . The energy at which the spectrum has its maximum
can then be determined by inverting

U (Rmax) = ER . (4.88)

The only ingredient that this method uses for determining the maxi-
mum of the spectrum is the BO curves of the molecule and its molecular
ion. The method can therefore be applied to more general cases than the
1D model considered in this chapter, since it only requires knowledge of
the BO curves.
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4.4.4 Validity of the BO
Since the Born-Oppenheimer approximation is an approximation, we
would expect that there is a regime of parameters where it will not do
well. It is well known that the BO approximation fails at describing Ryd-
berg states and since it is an adiabatic theory, it fails when non-adiabatic
couplings are non-negligible, which happens near conical intersections.
It turns out that when considering tunneling ionization the BO approxi-
mation breaks down for weak field strengths. This is perhaps surprising,
since one might naively would expect that not a lot should happen at weak
field strengths. This breakdown of the BO approximation for weak field-
strengths was first reported in Ref. [10]; in this section we will summarize
the explanation given there for this breakdown.

The BO approximation appears in the limit of infinite nuclear mass,
and use of this approximation is justified since the nuclei are at least 1836
times heavier than the electrons. The heavy mass of the nuclei means that
the electrons move a lot faster than the nuclei. Another way to say this
is that the typical time-scale of electron motion is a lot shorter than the
typical time-scale for nuclear motion. If, however, the electron should
move far away from the nuclei it will spend a lot of time doing this, and
even though it moves a lot faster than the nuclei, if it moves sufficiently far
away, the time scale of the electronic motion can become longer than that
of the nuclear motion. If this happens the BO approximation breaks down.
This also explains why the BO approximation breaks for Rydberg states,
since here the electron is far from the nuclei. We will now estimate how
far away from the nuclei the electrons should move before this starts to
happen.

A typical electron velocity can be estimated as κe = p−2Ee (R0;0),
where R0 is the equilibrium internuclear distance, which for H+

2 is R0 =
2a.u.. A typical time scale for the nuclear motion can be estimated as
T = 1

2ωe
, where ωe is obtained by expanding the BO potential around R0 to

second order U (R)+Ee (R;0) ≈U (R0)+Ee (R0;0)+ 1
2 Mω2

e (R −R0)2. Using
these estimates Ref. [10] defines a critical distance [see Fig. 4.7]

zBO =κe T = κe

2ωe
, (4.89)

such that for |z| < zBO we expect BO to work well, while for |z| > zBO

we expect it to break down. Since the magnitude of the wave function
is essentially unchanged after the tunneling, the BO approximation is
expected to work well when the outer turning point is within this zBO



4.4 Born-Oppenheimer Approximation 43

z

κ =√
2Ip T ∼

p
M

zBO =κT

Figure 4.7: The motion of the nuclei happens at a time scale
T . The electron moves with velocity κ =√

2Ip , where Ip

is the ionization potential. The product of these gives a
distance zBO, beyond which we expect BO to breakdown.

distance. The outer turning point is approximately located at zo = Ee (R0;0)
F ,

so by equating the critical BO distance with the outer a turning point a
critical field

FBO = 2κeωe (4.90)

can be estimated, such that the BO approximation is expected to give good
results for larger fields, but fail for smaller fields.



5 Tunneling Ionization of
Molecules in 3D

In this chapter we extend the theory of the last chapter to three electronic
dimensions. All the numerical work in the following chapters are done
in one electronic dimension, so it is not necessary to read this chapter in
order to read the remainder of the thesis. The content of this chapter is
similar to that of Chapter 4, and extensive reference is made to Chap. 4
when the same formulations can be used.

5.1 Formal Theory
As in Chap. 4, we write the Hamiltonian using the Jacobi coordinates from
Chap. 3

H(r,R) =− 1

2M
∇2

R − 1

2m
∇2

r +F · (QR+qr
)+U (R)+V (r,R). (5.1)

We wish to solve the time-independent Schrödinger equation

[H(r,R)−E(F )]Υ(r,R) = 0. (5.2)

First we assume that the molecule has been aligned such that its internu-
clear axis R has some particular direction in space. Such an alignment can
for instance be achieved by inducing a rotational wave packet using an
alignment pulse, as described in Ref. [20]. We additionally assume that
the external field is linearly polarized in the z direction such that F = F ẑ.
For F = 0 we assume thatΥ(r,R) is invariant under rotations around the
R vector. Due to the azimuthal symmetry of the molecule only the polar
angle β between R and F matters. We can write the wave function

Υ(r,R) = A(β)
1

R
Ψ(r,R,β), (5.3)

44
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z

x

β

F

R

r

Figure 5.1: Sketch of the coordinates used.

where A(β) is a function that is sharply peaked around some particular an-
gle. It can be thought of as a linear combination of many angular functions
YJ M (ΩR ) in the nuclear coordinate, and its exact form depends on the
alignment pulse used. With this alignment, β takes the role as an external
parameter, and we omit explicit reference to it in the following.

The TISE now takes the form

[H(r,R)−E(F )]Ψ(r,R) = 0 (5.4)

with the Hamiltonian

H(r,R) =− 1

2M

d 2

dR2
− 1

2m
∇2

r +F
(
QRz +qz

)+U (R)+V (r,R), (5.5)

where Rz is the z component of R. We wish to solve this TISE subject to
outgoing-wave boundary conditions in the electronic coordinate r. This
choice of boundary condition means that we want to find a Siegert state.
As described in Chapter 2 such a state has a complex energy.

We assume that the nuclei cannot pass through each other, so we
restrict the nuclear coordinate to 0 < R and impose the zero boundary
condition

Ψ(r,R = 0) = 0. (5.6)

Before the exact form of the outgoing-wave boundary conditions in the
electronic coordinate can be specified we must first consider the asymp-
totic behaviour of Eq. (5.4).

5.1.1 Large r Limit
We assume that in the limit where the electron is far away from the molecule,
the potential describing the electron-nuclear interaction is dominated by
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the monopole term of the multipole expansion

V (r,R)|r→∞ =−Z

r
+O(r−2), (5.7)

where Z = q1 +q2 is the total charge of the system left behind when the
electron has left. The only thing that coupled the electronic r and nuclear
R degrees of freedom was this potential, so in this asymptotic region the
Hamiltonian additively separates in electronic r and nuclear R coordinates,
and by insertion of the ansatzΨ(r,R) = f (r)g (R) in Eq. (5.4) we obtain the
separated equations

[
− 1

2m
∇2

r +F qz − Z

r
−Er

]
f (r) = 0, (5.8a)

[
− 1

2M

d 2

dR2
+FQRz +U (R)−ER

]
g (R) = 0, (5.8b)

with the separation constants

E = Er +ER . (5.9)

The nuclear problem is of the same form as in Chap. 4, and the discussion
of this problem in Sec. 4.2.1 also applies for the 3D case.

Parabolic Coordinates for the Electronic Problem

Let us now consider the electronic problem Eq. (5.8a). This problem has a
spherically symmetric Coulomb potential and a linear field potential. It is
separable in parabolic coordinates, so will therefore rewrite it using these
coordinates. First we introduce the following scaled quantities

r̃ =p
mr, (5.10a)

F̃ = qp
m

F, (5.10b)

Z̃ =p
mZ . (5.10c)

In terms of these quantities Eq. (5.8a) is of the same form as Eq. (1) of
Ref. [11]. We can therefore write the problem in parabolic coordinates in
the same way as done in Ref. [11]. We define our parabolic coordinates by

ξ= r̃ + z̃, 0 ≤ ξ<∞ (5.11a)

η= r̃ − z̃, 0 ≤ η<∞ (5.11b)

ϕ= arctan
ỹ

x̃
, 0 ≤ϕ< 2π. (5.11c)
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Figure 5.2: Parabolic coordinates. The paraboloids show
surfaces of constant η. For fixed η, the ξ and ϕ coordinates
designate locations in the paraboloid. The red/blue col-
ors in the lower paraboloid illustrate a parabolic channel
functionΦµ(ξ,ϕ) [Eq. (5.15a)]. These functions ’live’ in the
paraboloids. Due to the curvature of the paraboloids their
extent is finite. This means that η is the only coordinate we
need to consider at infinity.

These coordinates are illustrated in Fig. 5.2. Using these we can rewrite
Eq. (5.8a) as

[
∂

∂η
η
∂

∂η
+B(η)+ Erη

2
+ F̃η2

4

]
f (r) = 0, (5.12)

where

B(η) = ∂

∂ξ
ξ
∂

∂ξ
+ η+ξ

4ξη

d 2

dϕ2
+ Z̃ + Erξ

2
− F̃ξ2

4
. (5.13)

In the limit of large η the operator B(η) becomes independent on η
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and only depends on ξ and ϕ

B ≡B(η)|η→∞ = ∂

∂ξ
ξ
∂

∂ξ
+ 1

4ξ

d 2

dϕ2
+ Z̃ + Erξ

2
− F̃ξ2

4
. (5.14)

Note that this limit implies the limit r → ∞ (but not conversely). For
F̃ ≥ 0 this operator has a purely discrete spectrum. This is important,
since it means that we do not need to consider the limit ξ→ ∞. Only
the η coordinate can go to infinity; this coordinate takes the role as the
tunneling coordinate. In the η→∞ limit Eq. (5.12) is separable, and we
can write the separated equations1

[
∂

∂ξ
ξ
∂

∂ξ
+ 1

4ξ

d 2

dϕ2
+ Z̃ + Erξ

2
− F̃ξ2

4
−βµ

]
Φµ(ξ,ϕ) = 0, (5.15a)

[
∂

∂η
η
∂

∂η
+βµ+

Erη

2
+ F̃η2

4

]
hµ(η) = 0. (5.15b)

The parabolic channel functionsΦµ(ξ,ϕ) are normalized according to

∫ ∞

0

∫ 2π

0
Φµ(ξ,ϕ)Φµ′(ξ,ϕ)dϕdξ= δµµ′ . (5.16)

These solutions to Eq. (5.15a) are required to be regular at ξ= 0 and fulfill
periodic boundary conditions in ϕ. They are analogous to spherical har-
monics, which describe what happens on spheres of constant r , where lo-
cations are designated by coordinates θ,ϕ. Correspondingly, the parabolic
channel functions describe what happens in paraboloids of constant η,
where locations are designated by the ξ,ϕ coordinates.

It is convenient to introduce the reduced function

fµ(η) = η1/2hµ(η), (5.17)

such that Eq. (5.15b) becomes
[

d 2

dη2
+ F̃η

4
+ Er

2
+ βµ

η
+O(η−2)

]
fµ(η) = 0. (5.18)

For F > 0 the leading order term of the asymptotic solution to these equa-
tions [see App. A] is

f (η) ≡ fµ(η) = m1/421/2

(F̃η)1/4
exp

[
i F̃ 1/2η3/2

3
+ i Erη

1/2

F̃ 1/2

]
. (5.19)

1Usually ν is used for the parabolic channel index. Due to similarity of ν with the
vibrational index v , the letter µ will be used instead in this thesis.
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Note that this expression is in fact independent on µ. This expression
defines the outgoing-wave boundary condition. This completes the for-
mulation of boundary conditions, and we can write the full wave function
in the asymptotic region as

Ψ(r,R)|η→∞ =η−1/2
∑
µ

∑
v

Cµv gv (R) f (η)Φµ(ξ,ϕ)

+η−1/2
∑
µ

∫ ∞

0
Cµ(k)g (R,k) f (η)Φµ(ξ,ϕ)

dk

2π
, (5.20)

where Cµv and Cµ(k) are asymptotic expansion coefficients. Note that f (η)
and Φµ(ξ,ϕ) depend on the nuclear energy and therefore on v and k in
the sum and integral respectively. By projecting on theΦµ(ξ,ϕ) and gv (R)
or g (R,k) states and using the orthonormality of these we can write the
asymptotic coefficients in terms of the wave function

Cµv = 1

η−1/2 f (η)

∫ ∞

0
gv (R)

〈
Φµ(ξ,ϕ)

∣∣Ψ(r,R)
〉

(ξ,ϕ) dR

∣∣∣∣
η→∞

, (5.21a)

Cµ(k) = 1

η−1/2 f (η)

∫ ∞

0
g (R,k)

〈
Φµ(ξ,ϕ)

∣∣Ψ(r,R)
〉

(ξ,ϕ) dR

∣∣∣∣
η→∞

. (5.21b)

We will use the notation Cµ(ER ) to indicate either of these

Cµ(ER ) = 1

η−1/2 f (η)

∫ ∞

0
g (R)

〈
Φµ(ξ,ϕ)

∣∣Ψ(r,R)
〉

(ξ,ϕ) dR

∣∣∣∣
η→∞

, (5.22)

where g (R) can be either gv (R) or g (R,k). Note that g (R),Φµ(ξ,ϕ) and f (η)
all depends on the nuclear energy ER considered.

The full wave function is thus expanded in terms of nuclear bound and
continuum channels indexed by v and k respectively, and additionally in
terms of parabolic channels indexed by µ. As we saw in Chapter 2 the SS
has a probability current that satisfies an equation of continuity [9]

∇rjr(r,R)+ ∂

∂R
jR (r,R) = Γ |Ψ(r,R)|2 , (5.23)

where the currents are defined by

jr(r,R) = 1

i 2m

(
Ψ∇rΨ

∗−Ψ∗∇rΨ
)

, (5.24a)

jR (r,R) = 1

i 2M

(
Ψ

d

dR
Ψ∗−Ψ∗ d

dR
Ψ

)
. (5.24b)
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Using the asymptotic expansion Eq. (5.19) one can show that in the
weak-field limit the total rate is given by2

Γ|F→0 =
∑
µ

∑
v

∣∣Cµv
∣∣2 +

∑
µ

∫ ∞

0

∣∣Cµ(k)
∣∣2 dk

2π
(5.25)

We can define the norm square of the individual asymptotic expansion
coefficients as partial rates

Γµv =
∣∣Cµv

∣∣2 , (5.26a)

Pµ(k) =
∣∣Cµ(k)

∣∣2 . (5.26b)

The latter of these describe the distribution of probability current as a
function of the energy of dissociating nuclei and will be called the spec-
trum. The rate and these partial rates are the main observables of interest,
for which we shall now describe approximate expressions.

5.2 Weak-Field Asymptotic Theory
See the 1D Sec. 4.3 for a detailed discussion of WFAT. Here we mainly list
the points in the derivation that are different.

In the field-free case F = 0 the asymptotic wave function is of the form

Ψ(r,R)|η→∞ =η−1/2
∑
µ

∑
v

Dµv gv (R) f (0)
µ (η)Φ(0)

µ (ξ,ϕ)

+η−1/2
∑
µ

∫ ∞

0
Dµ(k)g (R,k) f (0)

µ (η)Φ(0)
µ (ξ,ϕ)

dk

2π
, (5.27)

where β(0)
µ and Φ(0)

µ (ξ,ϕ) are the asymptotic adiabatic eigenvalues and
eigenfunctions solving Eq. (5.15a) for F = 0. The leading order term of the
asymptotic solution to Eq. (5.15b) is in this field-free case of the form [see
App. A]

f (0)
µ (η) = ηβ(0)

µ /κe−κη/2, κ =
√
−2E (0)

r , (5.28)

where E (0)
r is the field-free electronic energy. Note that these depend on µ,

as opposed to f (η) from Eq. (5.19)3. In the 3D case the matching region is

2The factor in front of the exponential in Eq. (5.19) is in fact chosen such that no extra
constant appears in this expression.

3This is because the term βµ/η in Eq. (5.18) is not neglectable compared to the
constant term, when there is no η1 present.
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delimited by (see Eq. (4.32))

2
∣∣βµ

∣∣
|Er|

¿ η¿ 2 |Er|
F̃

. (5.29)

WFAT is applicable when

F̃ ¿ E 2
r∣∣βµ
∣∣ . (5.30)

5.2.1 WKB Wave Function
We now turn to deriving this WKB wave function. We expand the energy to
first order in field strength

Er = E (0)
r −µz F̃ +O(F 2), (5.31)

where the dipole moment can be calculated from the field-free wave func-
tion through the integral

µz =−
[∫ ∞

0
dR

∫
d 3r (QRz +qz)Ψ2(r,R)−

∫ ∞

0
dR QRz g 2(R)

]
. (5.32)

We cast Eq. (5.18) in the form used in WKB

[
d 2

dη2
+p2(η)

]
fµ(η) = 0, (5.33)

where

p2(η) = F̃η

4
+ Er

2
+ βµ

η
+O(η−2). (5.34)

The WKB wave function is given by [Eq. (B.11)]

fµ(η) = CWKBe i S(η)

p1/2(η)
(5.35)

where the classical action is defined by

S(η) =
∫ η

ηo

p(η′)dη′, (5.36)
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Matching region
Potentials similar

F = 0 asymptotic valid

F 6= 0 asymptotic valid

F 6= 0 WKB valid

F = 0

F small

η
0 2|Er|

F̃

2βµ
|Er|

Figure 5.3: This figure shows the potential

−1
2

[
F̃η
4 + Er

2 + βµ
η

]
of Eq. (5.18), as a function of η, for

F = 0 and a small value of F . On the η axis the values
2βµ/ |Er| and 2 |Er|/F̃ are indicated. These are quite close
to the inner and outer classical turning points respectively,
in fact in the F → 0 limit they coincide with these. Different
regions of η are indicated by colored bands around the η
axis. These regions are all ’fuzzy’, since they are defined
by relations of the type ηÀ or η¿, and a definite limit
to them cannot be found, which is why they are shown
with a color gradient. In the η¿ 2 |Er|/F̃ (purple) region,
the potentials are similar. The F = 0 asymptotic Eq. (5.28)
is valid in the (blue) region ηÀ 2βµ/ |Er|. The overlap of
these regions is the matching region. In the F 6= 0 case the
WKB (orange region) is valid everywhere, except near the
turning points, and the weak-field asymptotic expansion
Eq. (5.19) is valid outside the outer turning point (red
region).
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F 6= 0 asymptotic valid

WKB not valid
Matching region

Re η

Im
η

0 2|Er|
F̃

2βµ
|Er|

Figure 5.4: Complex η plane. The WKB is valid everywhere
except near the classical turning points. The region where
WKB is not valid is indicated by the blue circles. By analyti-
cally continuing the WKB into the complex plane around
the turning points, the coefficient found from matching
with the field-free state in the matching region can be re-
lated to the weak-field asymptotic state on the far side of
the outer turning point.

with ηo chosen as the outer turning point. The WKB is accurate when the
condition

∣∣∣∣
d

dη

1

p(η)

∣∣∣∣¿ 1 (5.37)

is fulfilled. In order to match the WKB wave function [Eq. (5.35)] with
the asymptotics of the wave function we need to simplify the WKB wave
function by considering the weak-field and large η limits.

It is convenient to introduce the re-scaled variable

x = F̃η

κ2
, η= κ2x

F̃
, (5.38)

where κ was defined in Eq. (5.28). In terms of this variable the classical
momentum takes the form

p2(x) = κ2x

4
+
−1

2κ
2 −µz F̃ +O(F 2)

2
+ F̃βµ
κ2x

+O(η−2). (5.39)

We now consider the limit of small F , and simultaneously the limit of large
η, since we only care about what happens in the asymptotic region

F → 0, η=O(F−1), x =O(F 0). (5.40)
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In this limit the classical momentum simplifies to

p2(x) = κ2

4

[
x −1+ 2

κ2

(
−µz +

2β(0)
µ

κ2x

)
F̃

]
+O(F 2). (5.41)

The outer turning point ηo is in this limit given by

xo = 1, ηo = κ2

F̃
. (5.42)

The condition Eq. (5.37) for the applicability of WKB reduces in this limit
to

|x −1|À F̃ 2/3

κ2
, (5.43)

which means the WKB wave function [Eq. (5.35)] is valid when we are not
too close to the outer turning point xo = 1.

In the limit (5.40) the action [Eq. (5.36)] takes the form

S(η) = κ3

2F̃

[
2

3
(x −1)3/2 − 2F̃

κ2

(
µz(x −1)1/2 −

2β(0)
µ

κ2
arctan(x −1)1/2

)
+O(F 2)

]
.

(5.44)

WKB Wave Function in the Matching Region

We now consider the WKB in the matching region [Eq. (5.29)] at intermedi-
ate η. In terms of x the matching region is delimited by

∣∣βµ
∣∣ F̃ /E 2

r ¿ x ¿ 1.
In this region the action [Eq. (5.44)] takes the form

S(η) = i
κ3

2F̃

[
−2

3
+x − 2F̃

κ2

(
µz +

β(0)
µ

κ2
ln

x

4

)
+O(F 2)

]
(5.45a)

=−i
κ3

3F̃
+ i

κη
2

− iκµz − i
β(0)
µ

κ
ln

F̃η

4κ2
+O(F 1). (5.45b)

Note that the action is purely imaginary, since the matching region is
located in the tunneling region of the weak-field state. The classical mo-
mentum is given in this region by p(η) = iκ/2, which is most easily seen by

calculating p(η) = S′(η) and using
2|βµ|
|Er| ¿ η. By matching the WKB wave

function [Eq. (5.35)] in this region to the asymptotic of the field-free wave
function [Eq. (5.28)] we obtain

CWKB = Dµ

(κ
2

)1/2
exp

(
−κ3

3F̃
−κµz −

β(0)
µ

κ
ln

F̃

4κ2
+ i

π

4

)
, (5.46)

where Dµ indicates either Dµv or Dµ(k).
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WKB Wave Function Beyond the Outer Turning Point

The WKB wave function can be analytically continued from the match-
ing region x ¿ 1 to the asymptotic region x À 1, where the asymptotic
Eq. (5.19) is applicable. The analytic continuation is done through the
upper half plane of the complex x plane, staying away from the outer
turning point, such that the condition Eq. (5.37) is fulfilled. Since the WKB
wave functions in the regions are connected, the constant CWKB appearing
in Eq. (5.35) is the same in both cases. In the x À 1 region the action
[Eq. (5.44)] takes the form

S(η) = κ3

2F̃

[
2

3
x3/2 −x1/2 − 2F̃

κ2

(
µz x1/2 −

πβ(0)
µ

κ2

)
+O(F 2)

]
(5.47)

= F̃ 1/2η3/2

3
−

(κ2

2
+ F̃µz

)(
η

F̃

)1/2

+
πβ(0)

µ

κ
+O(F 1). (5.48)

The classical momentum takes the form p(η) = S′(η) = F̃ 1/2η1/2

2 . By match-
ing the WKB wave function [Eq. (5.35)] with the F 6= 0 asymptotic [Eq. (5.19)]
we obtain

Cµ =CWKBm−1/4 exp

(
i
πβ(0)

µ

κ

)
. (5.49)

where Cµ indicates either Cµv or Cµ(k).
We now insert the WKB coefficient CWKB which was found by matching

the WKB to the field-free state in the matching region [Eq. (5.46)] in the
above expression, which yields

Cµ = Dµ

( κ
2m1/2

)1/2
(

4κ2

F̃

)β
(0)
µ
κ

exp

(
−κ3

3F̃
−κµz + i

π

4
+ i

πβ(0)
µ

κ

)
. (5.50)

This equation is called the connection formula, and it is the central result
of WFAT. It links the field free asymptotic coefficients Dµ to the weak-field
asymptotic coefficients Cµ. The partial rates [Eqs. (5.26)] in WFAT can be
written

ΓWFAT
µv =G2

µvWµv (F ), (5.51a)

P WFAT
µ (k) =G2

µ(k)Wµ(F,k), (5.51b)
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where the field factor Wµ(F ) and structure factors Gµv ,Gµ(k) are defined
by

Wµ(F ) = κ
2m1/2

(
4κ2

F̃

)2
β

(0)
µ
κ

exp

(
−2κ3

3F̃

)
, (5.52a)

Gµv = Dµv e−κµz , (5.52b)

Gµ(k) = Dµ(k)e−κµz , (5.52c)

where Wµ(F ) can be either Wµv (F ) or Wµ(F,k). The WFAT partial rates
[Eq. (5.51)] are thus partitioned into two factors. The structure factor is
obtainable from the field free state and describes the structure of this,
while the field factor contains all the field dependence.

5.3 Born-Oppenheimer Approximation
See Sec. 4.4 for discussion of the BO approximation. In 3D the BO wave
function takes the formΨBO(r,R) =ψe (r;R)χ(R), where the components
fulfill the BO equations

[
−1

2
∇2

r +F z +V (r,R)−Ee (R;F )

]
ψe (r;R) = 0, (5.53a)

[
− 1

2M

d 2

dR2
+FQRz +U (R)+Ee (R;F )−EBO(F )

]
χ(R) = 0. (5.53b)

The electronic problem [Eq. (5.53a)] is seen to be on the same form as
the asymptotic electronic Equation (5.8a), so Eq. (5.53a) can be written
in parabolic coordinates and expanded in the η→∞ limit in the same
was as Eq. (5.8a), only we replace the energy Er with the electronic energy
Ee (R;F ) and put m = 1, q = 1. This allows us to write the electronic wave
function for F > 0 in the form

ψe (r;R)|η→∞ =
∑
µ

η−1/2Cµ(R) f (η;R)Φµ(ξ,ϕ;R), (5.54)

where Cµ(R) are asymptotic coefficients and the outgoing-wave is given
by

f (η;R) = 21/2

(Fη)1/4
exp

[
i F 1/2η3/2

3
+ i Ee (R;F )η1/2

F 1/2

]
. (5.55)
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This choice of outgoing-wave boundary condition means that once again
we have a SS with energy Ee (R;F ) = E (R;F )− i

2Γe (R;F ). We define the
partial electronic rate by

Γe,µ(R) =
∣∣Cµ(R)

∣∣2 . (5.56)

As in Chap. 2 there is a flux of probability associated with the SS, through
which we can relate the electronic rate to the asymptotic coefficient

Γe (R;F )|F→0 =
∑
µ

Γe,µ(R). (5.57)

We wish to find expressions for the partial rates in the BO approxima-
tion, so we insert the BO wave function in the expression for the asymptotic
coefficients [Eq. (5.22)]

C BO
µ (ER ) =

∑
ν

∫ ∞

0
g (R)Cν(R)

f (η;R)

f (η)

〈
Φµ(ξ,ϕ)

∣∣Φν(ξ,ϕ;R)
〉

(ξ,ϕ)χ(R)dR

∣∣∣∣
η→∞

.

(5.58)

If we assume that the electronic energy Er is the same as the electronic
energy Ee (R;F ) this reduces to

C BO
µ (ER ) =

∫ ∞

0
g (R)Cµ(R)χ(R)dR. (5.59)

Note that there is no explicit reference to the electron coordinate in this
expression. We will use this expression to define BO partial rates

ΓBO
µv =

∣∣∣C BO
µv

∣∣∣
2

, (5.60a)

P BO
µ (k) =

∣∣∣C BO
µ (k)

∣∣∣
2

, (5.60b)

where

C BO
µv =

∫ ∞

0
gv (R)Cµ(R)χ(R)dR, (5.61a)

C BO
µ (k) =

∫ ∞

0
g (R,k)Cµ(R)χ(R)dR. (5.61b)

5.3.1 Reflection Principle
Since it only refers to the nuclear coordinate, the reflection principle can
be developed in the exactly same way as in Sec. 4.4.1, only including the
parabolic index µ where relevant.
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5.3.2 WFAT in BO
See discussion in Sec.4.4.2. First we note that the field-free electronic wave
function can be asymptotically expanded

ψ(0)
e (r;R)|η→∞ =

∑
µ

η−1/2Dµ(R) f (0)
µ (η;R)Φ(0)

µ (ξ,ϕ;R), (5.62)

where

f (0)
µ (η;R) = ηβ(0)

µ (R)/κ(R)e−κ(R)η/2, κ(R) =
√
−2Ee (R;F = 0), (5.63)

and β(0) andΦ(0)
µ (ξ,ϕ;R) are the eigenvalues and eigenfunctions solving

Eq. (5.15a) with Ee (R ;F = 0) replacing Er. The WFAT can now be developed
in the same way as in Sec. 5.2. This yields

ΓWFAT
e,µ (R) =G2

µ(R)Wµ(F ;R), (5.64)

where the field factor Wµ(F ;R) and structure factor Gµ(R) are defined by

Wµ(F ;R) = κ(R)

2

(
4κ2(R)

F

)2
β

(0)
µ (R)

κ(R)

exp

(
−2κ3(R)

3F

)
, (5.65a)

Gµ = Dµ(R)e−κ(R)µz . (5.65b)

5.4 One and Three Dimensions Compared
There are some subtle differences between the 1D and 3D WFAT expres-
sions obtained. These originate in the use of different coordinates, and
therefore different definitions of the asymptotic coefficients. First we
note that if we consider x̃ = ỹ = 0, or equivalently ξ = 0, we get that
η=−2z̃ =−2

p
mz. Also for fixed x, y we have that

η|z→−∞ →−2z̃. (5.66)

We can therefore think of the η coordinate in the 3D theory as correspond-
ing to z of the 1D theory. Most of the 1D equations can be obtained
from the 3D expressions by substituting η→−2

p
mz and removing the

parabolic index µ, which describes what happens in the ξ,ϕ directions
’transversal’ to η.

Another subtle difference between the 1D and 3D formulations is the
factor of 21/2 that appears in the pre-exponential of the 3D outgoing-
wave (5.19), but not in the corresponding 1D asymptotic (4.16). This
originates from the fact that we have used a reduced wave function in the
η coordinate, see Eq. (5.17).
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5.4.1 Hydrogen Atom
As an example let us consider the ground state of the hydrogen atom and
compare the 1D and 3D WFAT formulations for this. The reduced mass and
charge should be put to m = q = 1, and we have the following parameters:
Z = 1,E = −1

2 ,κ = 1,µz = 0. For the 3D case the parabolic eigenvalue of

the dominant state4 µ= (0,0) is given by β(0)
(0,0) = 1/2. The WFAT rate (5.51)

then takes the form

ΓWFAT
(0,0) = D2

(0,0)
1

2

4

F
exp

(
− 2

3F

)
. (5.67)

Formulating the same for 1D is more complicated, since here we can-
not avoid the Coulomb singularity. We can however choose to consider a
soft-coulomb potential V (z) = (z2 +a)−1/2 which has asymptotic tail z−1

and ground state energy E =−1
2 . For such a potential it would require a

numerical calculation to determine the field-free asymptotic coefficient
D , but we do not concern ourselves with the value of this coefficient here.
Instead we just write the WFAT rate (4.57)

ΓWFAT
v = D2

(
2

F

)2

exp

(
− 2

3F

)
. (5.68)

We note that the contents of the exponential functions are identical in
the two cases. There is a difference in the pre-exponential power function,
where the exponent is different in the 3D and 1D cases. This is because
the parabolic eigenvalue β(0)

(0,0) = 1/2 is not identical with the asymptotic
charge Z = 1. This eventually originates from ’fictitious forces’ related to
the parabolic coordinates.

4For details on this quantum number and the parabolic eigenvalue see Ref. [11].



6 Numerical Methods

In this chapter the numerical methods used to find ionization rates and
various other properties of the Siegert states are presented. The methods
and algorithms described here have been implemented in FORTRAN. The
FORTRAN programs are based on code written by my co-supervisor Oleg
for an adiabatic basis, but they have been heavily modified by me to make
use of a diabatic basis. Additionally I have added the parts of these pro-
grams that allow for construction of wave functions. Parts of the material
in this chapter also appeared in [1], of which I am the first author.

6.1 Reduction to a Multi-Channel
Eigenvalue Problem

In order to solve the TISE (4.1) we introduce a complete set of vibrational
states of the molecular ion, the so called diabatic basis1

[
− 1

2M

d 2

dR2
+U (R)+FQR −εv (F )

]
ϕv (R) = 0, v = 0,1,2, . . . , (6.1)

with boundary conditions ϕv (0) = 0, expressing that we do not allow the
nuclei to pass through each other, and ϕv (Rmax) = 0 because we use a
box of finite size in R. This is reasonable to do as long as the exact wave
function does not have considerable weight around or further out than
Rmax. The diabatic states ϕv (R) coincide with the bound state solutions
gv (R) of Eq. (4.7b) when Rmax is sufficiently large.

The diabatic basis functions ϕv (R) and their eigenvalues εv (F ) are real
and the basis functions are orthonormal

∫ Rmax

0
dR ϕv (R)ϕv ′(R) = δv v ′ . (6.2)

1The term diabatic here does not refer any type of fast motion or rapidly changing
variable. It is a name we use simply because the chosen basis is not an adiabatic basis.

60
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The wave functionΨ(z,R) is expressed in the diabatic basis as

Ψ(z,R) =
∑
v

fv (z)ϕv (R). (6.3)

Inserting the wave function (6.3) in the Schrödinger equation (4.1), and
projecting on the ϕv (R) basis yields

[
− 1

2m

d 2

d z2
+F qz +εv (F )−E(F )

]
fv (z)+

∑

v ′
Vv v ′ (z) fv ′(z) = 0, (6.4)

where Vv v ′ (z) = ∫ ∞
0 dR ϕv (R)V (z,R)ϕv ′(R). By projecting out the R de-

gree of freedom we thus obtain a system of coupled equations for the coef-
ficient functions fv (z). Let us consider our problem in the limit |z| →∞.
We assume that our potential in this limit has the Coulomb-form from
Eq. (4.6). In this asymptotic limit the potential is independent of R , and the
channel equations (6.4) decouple. We wish to solve these channel equa-
tions subject to the outgoing-wave boundary condition given by Eq. (4.16),
where Ez = E −εv .

6.2 Spatial Basis: Discrete Variable
Representation

In this section the properties of the discrete variable representation (DVR)
[21] basis will be analyzed. We will use two different kinds of these bases for
the z and R coordinates. The basis functions of a DVR basis are localized in
space, and we can think of it as similar to a grid representation. We want to
use these DVR bases to describe functions of a coordinate x on an interval
[xmin, xmax]. The DVR functions are however more naturally defined using
a different variable t on a different interval [tmin, tmax], which depends
on the specific DVR considered. We therefore first consider coordinate
transformations between the coordinate x and the natural DVR variable t .
In this section we will use the bra-ket notation to indicate integration in
the x coordinate

〈·〉 =
∫ xmax

xmin

· d x. (6.5)
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6.2.1 Coordinate Transform
We consider the linear transformation from t ∈ [tmin, tmax] to x ∈ [xmin, xmax]
given by

x = xmin +
xmax −xmin

tmax − tmin
(t − tmin) (6.6a)

= xmin + sx(t − tmin), (6.6b)

where

sx = xmax −xmin

tmax − tmin
. (6.7)

The inverse transformation is given by

t = x −xmin

sx
+ tmin. (6.8)

Integrals are transformed according to

∫ xmax

xmin

f (x)d x = sx

∫ tmax

tmin

f (x(t ))d t . (6.9)

In the rest of this section we will use x and t interchangeably, with the
above transformation implicitly included.

6.2.2 Quadrature
A DVR basis is intimately linked with a corresponding Gaussian quadrature
[22]. Here we will only list the properties of a Gaussian quadrature, but not
prove these. A Gaussian quadrature is a way of approximately evaluating
integrals of the form

∫ tmax

tmin

ω(t )F (t ) d t ≈
N∑

i=1
wi F (ti ), (6.10)

whereω(t ) is some known weight function, and ti , wi are called quadrature
points (or nodes) and quadrature weights, respectively. These are chosen
in an ’optimal’ way such that Eq. (6.10) is as close to equality as possible.
By optimal is meant that we for a given weight function ω(t ) and interval
[tmin, tmax] choose the points and weights such that Eq. (6.10) holds exactly
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for all polynomials up to order 2N −1. This can be achieved by inserting
the monomials t k as F (t ) in Eq. (6.10) and require equality

∫ tmax

tmin

ω(t )t k d t =
N∑

i=1
wi t k

i k = 0, . . .2N −1. (6.11)

These 2N equations fixes the N points ti and N weights wi . One can
define a set of orthogonal polynomials pn(t ) of degree n associated with
the weight function ω(t ) such that

∫ tmax

tmin

ω(t )t k pn(t ) d t = 0, k = 0, . . .n −1. (6.12)

Up to a normalization these polynomials are unique. It can be shown that
the quadrature points for an N point quadrature are given by the zeros of
the pN (t ) polynomial associated with the weight function ω(t ). We shall
use these polynomials in the construction of the DVR basis.

6.2.3 DVR Properties
Now that we have introduced the coordinate transformation Eq. (6.6b) and
the quadrature we can define the DVR basis. The N functionsπi (t ) defined
on the interval [tmin, tmax] should possess the following three properties to
be called a DVR basis

1. Orthonormality:

〈
πi

∣∣π j
〉= δi j (6.13)

2. Delta property:

πi (t j ) = 1
p

w j sx
δi j (6.14)

Where t j and w j are the j ’th quadrature point and weight, respec-
tively, of the associated Gaussian quadrature. sx is the coordinate
transformation factor from Eq. (6.7).

3. Integral of arbitrary function F (x)

〈
πi

∣∣F (x)
∣∣π j

〉≈ F (xi )δi j . (6.15)
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We shall construct our DVR basis functions building on a spectral ba-
sis. A spectral basis is one where the basis functions extend over the full
interval [tmin, tmax] on which they are defined, as opposed to the DVR ba-
sis functions that are localized around their corresponding quadrature
points. The orthogonal polynomials associated with the weight function
ω(t ) are an example of such spectral functions. Let us denote the N spec-
tral basis functions by ψ j (x). Following Ref. [23], let us assume that we
have constructed a DVR basis πi (t) that fulfill the three DVR properties
[Eqs. (6.13)-(6.15)]. Then we can calculate the overlap of these with the
spectral basis functions using the quadrature rule (6.10)

〈
ψk

∣∣π j
〉= sx

∫ tmax

tmin

ψk (x)π j (t ) d t (6.16a)

≈ sx

N∑
n=1

wnψk (xn)π j (tn) (6.16b)

=√
w j sxψk (x j ). (6.16c)

The DVR basis span the same space as the spectral basis, so we can write

π j (x) =
N∑

n=1
ψn(x)

〈
ψn

∣∣π j
〉

(6.17a)

≈√
w j sx

N∑
n=1

ψn(x)ψn(x j ). (6.17b)

The transformation between the spectral and DVR bases can be expressed
in terms of a matrix T

π j (x) =
N∑

n=1
T j nψn(x), (6.18a)

T j n =√
w j sxψn(x j ). (6.18b)

We can also write up matrix elements in the spectral basis as
〈
ψn

∣∣ f (x)
∣∣ψm

〉=
∑

i , j
Ti nT j m

〈
πi

∣∣ f (x)
∣∣π j

〉
(6.19a)

=
∑

i , j
Ti nT j mδi j f (xi ) (6.19b)

=
∑

i
Ti nTi m f (xi ). (6.19c)

In the following we will describe two different kinds of DVR, each based
on their own specific quadrature.
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Figure 6.1: Spectral sine functionsψ j (x) [Eq. (6.20)]. These
function extend over the whole interval [xmin, xmax]. The
first function is colored dark blue, the last dark red, the
others in intermediate lighter colors.

6.2.4 Sine-DVR
The spectral basis of the first DVR we consider is in fact not polynomial.
In this so called sine-DVR we consider spectral functions of the form [see
Fig. 6.1]

ψn(x) =
√

2

πsx
sinnt , (6.20)

tmin = 0, tmax =π and

t = x −xmin

sx
, (6.21)

sx = xmax −xmin

π
. (6.22)

The quadrature points associated with this spectral function are the zeros
of the sin[(N +1)t ] function

tk = kπ

(N +1)
. (6.23)

In order to determine the weights we will look at the Chebyshev quadrature
[24, http://dlmf.nist.gov/3.5.E24]

∫ 1

−1
g (y)

√
1− y2d y =

∑

k
wk g (yk ), (6.24)

http://dlmf.nist.gov/3.5.E24
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which has nodes and weights

yk = cos

(
k

N +1
π

)
, (6.25a)

ωk = π

N +1
sin2

(
kπ

N +1

)
. (6.25b)

We wish to transform this to the variable t on the interval [0,π], and define

h(t ) = f (t )

sin2 t
, (6.26a)

y = cos t . (6.26b)

Let us now transform the integral

∫ π

0
f (t )d t =

∫ π

0
h(t )sin2 td t (6.27a)

=
∫ 1

−1
h(cos−1 y)

√
1− y2d y. (6.27b)

We see that this has the same form as the Chebyshev quadrature, where
g = h ◦cos−1, and by applying the Chebyshev quadrature to this integral
we obtain

∫ π

0
f (t )d t =

N∑

k=1

π

N +1
sin2

(
kπ

N +1

)
h(cos−1(yk )) (6.28a)

=
N∑

k=1

π

N +1
f (tk ), (6.28b)

where for k = 1, . . . , N we identify the quadrature nodes and weights

tk = cos−1 yk = kπ

N +1
, (6.29a)

wk = π

N +1
. (6.29b)

The nodes are identical to the zeros of sin[(N +1)t ] [Eq. (6.23)], and we
can use the weights above in our sine quadrature. It might seem strange
that the Chebyshev quadrature has anything to do with the sine function,
but the Chebyshev polynomials and trigonometric functions are in fact
intimately linked.
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Figure 6.2: Sine-DVR functions π j [Eq. (6.31a)]. The
quadrature points are indicated by vertical dashed lines,
and at each of these all but one DVR function go to zero.
Each DVR function primarily has weight around its quadra-
ture point. Note, however, that a DVR function does not in
general attain its maximum value at its quadrature point.

The transformation matrix [Eq. (6.18b)] from the spectral to the DVR
basis takes the form

T j n =
√

2

N +1
sinnt j , (6.30)

and the DVR functions [Eq.6.18a] can be written

π j (x) = 2p
(N +1)πsx

N∑
n=1

sinnt sinnt j (6.31a)

= 2

π

√
w j

sx

N∑
n=1

sinnt sinnt j . (6.31b)

These functions are illustrated in Fig. 6.2. Note that they all go to zero on
the boundary, like the sine functions from which they are built.

Properties

Here we check that the three DVR properties are indeed fulfilled by the
functions π j (x) [Eq. (6.31a)]

Property 1. First we note that by writing the sine functions as com-
plex exponential function (Eulers formula) and recognizing the resulting
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expression as two geometric series one can show

N∑
n

sinntk sinnt j =
N +1

2
δ j k , (6.32)

where tk and t j are quadrature points from Eq. (6.23). We will also need
the integral

∫ π

0
sinnt sinmt d t = π

2
δmn . (6.33)

Now we can calculate the overlap of the DVR functions

〈
πi

∣∣π j
〉= 4

(N +1)π

N∑
m,n=1

sinmti sinnt j

∫ π

0
sinnt sinmt d t

= δi j . (6.34)

Property 2. We use the result Eq. (6.32)

πi (x j ) = 2

π

√
w j

sx

N∑
n=1

sinnt j sinnti (6.35a)

= 1p
wi sx

δi j . (6.35b)

Property 3. Here we first apply the quadrature Eq. (6.28b), and then use
property 2

〈
πi

∣∣F (x)
∣∣π j

〉≈ sx
∑

k
wkπi (xk )F (xk )π j (xk )

= F (xi )δi j . (6.36)

So the sine-DVR functions [Eq. (6.31a)] indeed possesses the three DVR
properties.

Kinetic Energy

We want to calculate kinetic energy matrix elements in the DVR basis given
by

Ki j =
〈
πi

∣∣∣∣−
1

2

d 2

d x2

∣∣∣∣π j

〉
. (6.37)
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Here we put the mass to 1, rescaling the kinetic energy with the actual
mass is trivial and can be done at a later stage. First we note that for the
spectral functions (6.20)

d 2

d x2
ψn(x) =−s−2

x n2ψn(x). (6.38)

So the matrix element becomes

Ki j =−
N∑

n,m=1
Ti nT j m

〈
ψn

∣∣∣∣
1

2

d 2

d x2

∣∣∣∣ψm

〉
(6.39a)

= 1

2s2
x

N∑
n,m=1

m2Ti nT j m
〈
ψn

∣∣ψm
〉

(6.39b)

= 1

2s2
x

N∑
n=1

n2Ti nT j n . (6.39c)

6.2.5 Legendre DVR
We now consider another DVR, the Legendre DVR, where the spectral func-
tions are defined in terms of Legendre polynomials. Legendre polynomials
are defined on the interval t ∈ [−1,1] with the weight function ω(t) = 1,
and they are given by Rodrigues’ formula

Pn(t ) = 1

2nn!

(
d

d t

)n

(t 2 −1)n . (6.40)

These polynomials are illustrated in Fig. 6.3. In this case the coordinate
scaling factor [Eq. (6.7)] is

sx = xmax −xmin

2
. (6.41)

The Legendre polynomials obey the recurrence relations

(2n +1)Pn(t ) = P ′
n+1(t )−P ′

n−1(t ) (6.42a)

(n +1)Pn+1(t ) = (2n +1)tPn(t )−nPn−1(t ) (6.42b)

(1− t 2)P ′
n(t ) = nPn−1(t )−ntPn(t ), (6.42c)

where p ′(t ) = d
d t p(t ) and have the orthogonality relation

∫ 1

−1
Pm(t )Pn(t )d t = 2

2n +1
δmn . (6.43)
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The quadrature points are the i ’th root of PN (t ) denoted ti . The weights
for the associated quadrature can be written

wi =
2

N PN−1(ti )P ′
N (ti )

. (6.44)

We also define the rescaled Legendre polynomials

pn(t ) =
√

2n +1

2
Pn(t ). (6.45)

These functions are orthonormal, see Eq. (6.43). From Eq. (6.42b) the
following recurrence relations can be shown

pn(t ) = t

p
4n2 −1

n
pn−1(t )−

(
1− 1

n

)√
n +1/2

n −3/2
pn−2(t ). (6.46a)

p ′
n(t ) = 1

1− t 2

(
n

√
2n +1

2n −1
pn−1(t )−nt pn(t )

)
(6.46b)

The quadrature weights can be written as

wi =
p

4N 2 −1

N pN−1(ti )p ′
N (ti )

. (6.47)

We now define our spectral functions in terms of the rescaled Legendre
polynomials

ψn(x) =
√

1

sx
pn−1(t ), n = 1, . . . N . (6.48)

These are orthonormal with respect to integration in x

〈
ψm

∣∣ψn
〉= δmn . (6.49)

The transformation matrix [Eq. (6.18b)] takes the form

T j n =√
w j pn−1(t j ) (6.50)

The DVR basis is explicitly given by

π j (x) =
N∑

n=1

√
w j

sx
pn−1(t j )pn−1(t ), (6.51)
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Figure 6.3: Legendre polynomials, from which the spectral
functions ψ j (x) [Eq. (6.48)] are built. The first polynomial
is colored dark blue, the last dark red, the others in inter-
mediate lighter colors.
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Figure 6.4: Legendre-DVR functions π j [Eq. (6.51)]. At
each quadrature point all the other DVR functions go to
zero. Each DVR function primarily has weight around its
quadrature point. The DVR functions have been multiplied
by the square root of the weight to make the plot look more
balanced.
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and is illustrated in Fig. 6.4. Note that these functions do not go to zero on
the boundary.

Notice that the symmetry of the Legendre polynomials Pn(−t ) = (−1)nPn(t )
implies tN+1−i =−ti and therefore

TN+1−i ,n = (−1)n−1Ti n . (6.52)

This implies that

π j (−x) =
N∑

n=1
(−1)n−1TN+1− j ,n(−1)n−1ψn(x) (6.53a)

=πN+1− j (x). (6.53b)

In the next section we will need the DVR basis functions evaluated at
the boundaries of the interval [xmin, xmax].

π j (x) =
N∑

n=1
T j n

√
n −1/2

sx
·
{

1 x = xmax

(−1)n−1 x = xmin.
(6.54)

Kinetic Energy

We also need to find the kinetic energy matrix elements

Ki j =
1

2m

∫ xmax

xmin

d

d x
πi (x)

d

d x
π j (x)d x (6.55a)

= 1

2m

N∑
n,m=1

Ti nT j m

∫ xmax

xmin

d

d x
ψn(x)

d

d x
ψm(x)d x (6.55b)

= 1

2m

1

s2
x

N∑
n,m=1

Ti nT j m

∫ 1

−1
p ′

n−1(t )p ′
m−1(t )d t . (6.55c)

We want to evaluate the integral in this last expression. The following is
similar to a derivation in Ref. [25]. From the recurrence relation (6.42a)
we know that the derivative of a Legendre polynomial is expressible as a
linear combination of lower order Legendre polynomials2

p ′
m(t ) =

m−1∑

k=0
amk pk (t ). (6.56)

2It also follows from the fact that any polynomial of a given order can be written as a
linear combination of Legendre polynomials up to that order.
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From the orthogonality of the Legendre polynomials we get

amk =
∫ 1

−1
d t p ′

m(t )pk (t ), (6.57)

and

amk +akm =
∫ 1

−1
d t (pm(t )pk (t ))′ (6.58a)

= pm(1)pk (1)−pm(−1)pk (−1) (6.58b)

= 1

2

p
2m −1

p
2k −1(1− (−1)m−k ). (6.58c)

The coefficients amk thus have the values

amk =
{p

2m −1
p

2k −1, if k = m −1,m −3, . . . ≥ 1

0 otherwise.
(6.59)

The integral of the derivative of the rescaled Legendre polynomials thus
takes the form

∫ 1

−1
p ′

n−1(t )p ′
m−1(t )d t =

m−1∑

k=1
amk

n−1∑

l=1
anlδkl . (6.60)

The kinetic energy becomes

Ki j =
1

2m

1

s2
x

N∑
n,m=1

m−1∑

k=1
amk T j m

n−1∑

l=1
anl Ti nδkl . (6.61)

We can extend the sums ending with m −1 and n −1 respectively to N ,
since ank = 0 for k ≥ n. We thus obtain

Ki j =
1

2m

1

s2
x

N∑

k=1
b j k bi k (6.62)

where

bi k =
N∑

n=1
ank Ti n . (6.63)
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6.2.6 Comparison of Sine and Legendre DVR
For both the sine and Legendre DVR the weight function ω(t) = 1. The
quadrature points and weights are, however, different in the two forms
of DVR. In sine-DVR the quadrature points are evenly distributed over
the interval [xmin, xmax], and the weights are the same for all quadrature
points. In Legendre DVR, on the other hand, the quadrature points are not
evenly distributed; more quadrature points are present near the boundary
of the interval [xmin, xmax], and less points are to be found in the middle of
the interval. The Legendre weights are pairwise the same, but otherwise
different for each quadrature point.

One essential difference between the two DVR’s is the boundary condi-
tion they fulfill at the end of the interval on which they are defined. The
sine-DVR functions go to zero on the interval boundary, but the Legendre-
DVR functions do not. The sine-DVR will be applied to solve the diabatic
problem [Eq. (6.1)] in the R-coordinate. These diabatic states should also
go to zero on the boundary of the interval they are considered, so this is a
suitable choice of basis. The z-coordinate, on the other hand, is divided
into a series of sectors (more on this below). The solutions in each of
these sectors must be connected at the boundaries of the sectors, and it is
therefore important to use a basis which is non-zero at the boundary. The
Legendre-DVR is such a basis.

6.3 Slow Variable Discretization
In this section the method used to locally solve the Schrödinger equa-
tion in each sector will be described. The method is called slow variable
discretization (SVD), and it was originally developed in Ref. [26] to avoid
problems with non-adiabatic couplings in adiabatic theories. In this thesis
we employ a diabatic basis, and thus we do not have the same problems
with non-adiabatic couplings, but the SVD nevertheless provides a conve-
nient framework for formulating the R-matrix propagation equations that
we will consider in the next section.

First we note that the Hamiltonian of the TISE [Eq. (4.1)] can be parti-
tioned as follows

H = K + Ṽ (z)+h, (6.64)
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where

h =− 1

2M

d 2

dR2
+U (R)+FQR, (6.65a)

K =− 1

2m

d 2

d z2
, (6.65b)

Ṽ (z) =V (z,R)+F qz. (6.65c)

We now consider coordinates within a sector z ∈ [z−, z+]. Within this
sector the Hamiltonian Eq. (6.64) is not Hermitian, but it would be con-
venient for us to work with a Hermitian Hamiltonian. To construct a
Hermitian Hamiltonian we introduce the Bloch operator

L = 1

2m

[
δ(z − z+)−δ(z − z−)

] d

d z
. (6.66)

When doing integrals of the type
∫ z+

z− d z with this operator it is implied that

we consider limε→0
∫ z++ε

z−−ε d z, such that the delta functions are included.
We now consider the eigenvalue problem

[
H +L − Ē

]
ψ̄= 0. (6.67)

The Bloch operator ensures hermicity of the Hamiltonian H+L associated
with Eq. (6.67) by cancelling surface terms appearing when one does
partial integration. These surface terms originate from the kinetic energy.
In the following we consider Eq. (6.67) and will later connect it to Eq. (4.1).

We now expand the wave function in terms of DVR function πi (z)

ψ̄(z,R) =
N∑

i=1
πi (z)Φi (R) (6.68)

where theΦi (R) functions are further expanded in terms of diabatic states
[solutions of Eq. (6.1)]

Φi (R) =
M∑

v=1
ci vϕv (R). (6.69)

By inserting the expansion (6.68) into Eq. (6.67) and projecting onπi (z)
we obtain

0 =
N∑

j=1

[
Ki j + Ṽ (zi )δi j − Ēδi j

]
Φ j (R)+hΦi (R) (6.70)
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where have used the properties of the DVR basis, including
∫ z+

z−
πi (z)Ṽ (z)π j (z)d z ≈ Ṽ (zi )δi j , (6.71)

and introduced the (hermitized) matrix elements of the kinetic energy

Ki j =
∫ z+

z−
πi (z)[K +L ]π j (z) d z (6.72a)

= 1

2m

∫ z+

z−

d

d z
πi (z)

d

d z
π j (z) d z. (6.72b)

We can expand Eq. (6.70) further by inserting the expansion (6.69), pro-
jecting on ϕu(R) and using Eq. (6.1)

0 =
N∑

j=1

M∑
v=1

[
Ki jδuv + Ṽvu(zi )δi j

]
c j v +

[
εu − Ē

]
ci u (6.73)

where

Ṽvu(zi ) =
∫ Rmax

0
ϕv (R)V (zi ;R)ϕu(R) dR +F qziδuv . (6.74)

Eq. (6.73) is a linear eigenvalue problem. We use the indices n,m to label
eigenvalues Ēn and eigenvectors (with elements cn

j v ). The eigenvectors
are normalized according to

N∑

j=1

M∑
v=1

cn
j v cm

j v = δnm . (6.75)

We can write wave functions corresponding to the eigenvectors

ψ̄n(z,R) =
N∑

i=1

M∑
v=1

cn
i vπi (z)ϕv (R), (6.76)

with the corresponding energy Ēn . This we can also write

ψ̄n(z,R) =
M∑

v=1
Fnv (z)ϕv (R), (6.77)

where

Fnu(z) =
N∑

i=1
cn

i uπi (z). (6.78)

In particular we see that evaluating the expansion function Fnu at a
quadrature point yields

Fnv (z j ) = 1
p

w j sx
cn

j u . (6.79)
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6.3.1 Relating Back to Full Wave Function
We now wish to express the solutionΨ to the original TISE (4.1) in terms
of the hermitized sector basis functions ψ̄n that are solutions of Eq. (6.76).
First we consider

〈
ψ̄n

∣∣L
∣∣Ψ

〉
z,R = 〈

ψ̄n
∣∣H +L −H

∣∣Ψ
〉

z,R (6.80a)

= 〈
ψ̄n

∣∣ Ēn −E
∣∣Ψ

〉
z,R (6.80b)

where we use the notation

〈·〉z,R =
∫ z+

z−

∫ Rmax

0
· dR d z, (6.81)

and have used the Hermicity of the operator H +L to apply it to the left.
We now use that the ψ̄n(z,R) form a complete basis

Ψ(z,R) =
∑
n

〈
Ψ

∣∣ψ̄n
〉

z,R ψ̄n(z,R) (6.82a)

=
∑
n

〈
ψ̄n

∣∣L
∣∣Ψ

〉
z,R

Ēn −E
ψ̄n(z,R) (6.82b)

Let us take a look closer look at

〈
ψ̄n

∣∣L
∣∣Ψ

〉
z,R = 1

2m

M∑
v=1

Fnv (z)

〈
ϕv

∣∣∣∣
d

d z

∣∣∣∣Ψ
〉

R

∣∣∣∣
z=z+

z=z−
(6.83)

where we used the expansion Eq. (6.77) and the notation

〈·〉R =
∫ Rmax

0
· dR. (6.84)

If we assume that we have a set of boundary conditions

d±
v =

〈
ϕv

∣∣∣∣
∂

∂z

∣∣∣∣Ψ
〉

R

∣∣∣∣
z=z±

(6.85)

we can write the wave function

Ψ(z,R) = 1

2m

∑
n

ψ̄n(z,R)

Ēn −E

M∑
v=1

(
Fnv (z+)d+

v −Fnv (z−)d−
v

)
. (6.86)

The coefficient functions fv (z) introduced in the wave function expan-
sion Eq. (6.3) can be expressed in terms of the SVD quantities as

fv (z) = 〈
ϕv

∣∣Ψ
〉

R = 1

2m

∑
n

Fnv (z)

Ēn −E
Gn(zsec), (6.87)
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where

Gn(zsec) =
∑
v

(
Fnv (z+)d+

v −Fnv (z−)d−
v

)
. (6.88)

The notation (zsec) indicates that Gn(zsec) depends on in which sector z is
in, but it is otherwise independent of z.

6.4 R-Matrix
Now that we formulated how to locally diagonalize the hermitized Hamil-
tonian within each sector using the SVD method we can write down the
object that we are really interested in, namely the R-matrix. The R-matrix
R is defined by

〈
ϕv (R)

∣∣Ψ(z,R)
〉

R =
M∑

u=1
Rvu(z)

〈
ϕu(R)

∣∣∣∣
∂

∂z

∣∣∣∣Ψ(z,R)

〉

R
. (6.89)

We can think of the R-matrix as a matrix if we consider the coefficient
functions

fv (z) = 〈
ϕv (R)

∣∣Ψ(z,R)
〉

R (6.90)

as a vector f. Equation (6.89) can then be written as a matrix equation

f =R(z)
d

d z
f. (6.91)

One can think of the R-matrix as essentially the ratio of the wave function
and its derivative; the inverse of the logarithmic derivative.

6.4.1 Propagation Equation
Projecting equation (6.86) [this equation was derived using the TISE (4.1)]
on diabatic states ϕv and using the expansion (6.77) we get

fv (z) =
M∑

u=1

1

2m

∑
n

(
Fnv (z)Fnu(z+)

Ēn −E
d+

u − Fnv (z)Fnu(z−)

Ēn −E
d−

u

)
. (6.92)

If we consider this at the boundary of the sector za , where a,b = ± are
indices used to indicate either the upper or lower boundary of the sector
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we get

fv (za) =
M∑

u=1

(
Ra+

vu d+
u −Ra−

vu d−
u

)
(6.93a)

=
M∑

u=1

(
aRaa

vud a
u +bRab

vud b
u

)
, (6.93b)

where b =−a, such that b designates the boundary that is not a, and

Rab
vu = 1

2m

∑
n

Fnv (za)Fnu(zb)

Ēn −E
. (6.94)

Inserting the same boundary point in the definition of the R-matrix [(6.89)]
we obtain the relation

M∑
u=1

Rvu(za)d a
u =

M∑
u=1

(
aRaa

vud a
u +bRab

vud b
u

)
. (6.95)

In matrix form this can be written

R(za)da = aRaada +bRabdb . (6.96)

Manipulating this equation we obtain

da = b
[
R(za)−aRaa]−1

Rabdb . (6.97)

In this expression we can interchange a and b. Doing this and inserting
the result in Eq. (6.96) yields

R(za)da = aRaada −Rab
[
R(zb)−bRbb

]−1
Rbada . (6.98)

Since this is true for any derivative vector da we can write the matrix
equation

R(za) = aRaa −Rab
[
R(zb)−bRbb

]−1
Rba . (6.99)

This equation is the main result of this section. It describes how to prop-
agate the R-matrix from the sector boundary b to the sector boundary
a. The matrices Rab that are used to make the propagation are calcu-
lated based on the local SVD diagonalization. Since the potentials we
consider are (at least) continuous, the wave function and by extension
the coefficient function fv (z) must be at least continuously differentiable.
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Rleft(z−2)
Rleft(z−1)

Rleft(z0)

Rright(z2)
Rright(z1)

Rright(z0)

z0

z1

z2

z−1z−2

Figure 6.5: Illustration of R-matrix propagation. The indi-
cated values of z are sector boundaries.

The R-matrix is defined in terms of the coefficient functions and their
derivatives [Eq. (6.89)], and this must therefore be continuous. This must
also be the case at the sector boundaries, so the R-matrix found at the
boundary of one sector must be the same as the R-matrix determined at
the corresponding boundary in the neighbouring sector. In this way we
can propagate the R-matrix not only through sectors, but between sectors,
and thus to everywhere on the z-axis.

Now we have devised a way to propagate the R-matrix, but which R-
matrix should we propagate? In order to apply our R-matrix propagation
scheme we need some initial R-matrix. Let us consider the problem in
the asymptotic limit at large |z|, where the z and R degrees of freedom
decouple. In this limit there is no coupling between the v-channels, that
describe the R-coordinate, and the R-matrix takes the diagonal form

Rv v ′(z)||z|→∞ = fv (z)
d

d z fv (z)
δv v ′ . (6.100)

The values of the coefficient function and its derivative can be found using
the asymptotic expansions of Appendix A. In this way we can construct
the asymptotic R-matrix in the ’left’ region where −z is very large, and the
’right’ region where z is very large. These can then be propagated inwards
trough sectors until they meet at some matching sector boundary whose
coordinate we denote z0. From the continuity of the coefficient function
and its derivative together with the definition of the R-matrix [Eq. (6.89)]
we obtain

[
Rright(z0)−Rleft(z0)

]
d = 0, (6.101)
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where Rright(z),Rleft(z) are the R-matrices obtained from propagation
of the asymptotic R-matrices from the left and right ends of the z-axis
respectively, see Fig. 6.5. If the derivative d is non-zero3, we must have
that the matrix Rright(z0)−Rleft(z0) is singular, which is equivalent to

det
[
Rright(z0)−Rleft(z0)

]= 0. (6.102)

There is one missing ingredient in this procedure, though. In order
to construct the asymptotic expansions we need to know the energy, see
Eq. (4.16). The energy is, however, what we are trying to find, so it seems
we are at an impasse. If we can somehow obtain a guess for the energy
Eguess, we can still carry through with the whole procedure as described,
only as long as the energy we guess is not the correct energy we cannot
expect that the determinant in Eq. (6.102) is zero. However, if we consider
this determinant as a function of the energy

ε(E) = det
[
Rright(z0)−Rleft(z0)

]
, (6.103)

then we can use the Newton-Raphson zero-finding algorithm to find the
energy where this is zero. If our initial guess for the energy was close
enough this should hopefully yield the correct, physical energy.

The Newton-Raphson algorithm is an iterative procedure, which is
derived by initially expanding the function one wants to find a zero for to
first order

ε(En+1) ≈ ε(En)+ε′(En)(En+1 −En). (6.104)

We then set ε(En+1) = 0 and solve for En+1

En+1 =
ε(En)

ε′(En)
+En . (6.105)

A complication is that we do not know the derivative ε′(En), but this can
be circumvented by using a numerical derivative ε′(En) ≈ ε(En )−ε(En−1)

En−En−1
. For

the first step some value is more or less arbitrarily chosen for En −En−1.
The initial guess for the energy is found from a direct diagonalization

of the Hamiltonian for F = 0 using a sine-DVR basis for both the z and R

3In cases where d = 0 at the matching point this method fails. The matching point
can however be chosen freely. For instance, in the case where F = 0 this derivative vector
is zero at z = 0, so here we should choose some other value.
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coordinates4. In this F = 0 case the wave function goes to zero for |z|→∞,
which is compatible with the sine-DVR. Since the energy is continuous in
F , E (F = 0) is close to the energy at small F , and E (F = 0) can therefore be
used as an initial guess for the energy at some small F . Once the energy at
this small F has been found, it can be used as initial guess for the energy
at a slightly larger F . This procedure can be repeated to find the energies
for any given F , conditioned that it converges all the way.

An example of energies obtained using this R-matrix propagation
method is shown in Fig. 7.5.

6.4.2 Construction of Wave Function
Not only the energy can be found using R-matrix propagation. It is also
possible to construct the wave function [Eq. (6.86)]. In order to do this
we need to know the derivative vectors d at the sector boundaries. From
Eq. (6.97) we see that this derivative vector can be propagated through a
sector by

da =Dadb (6.106)

where the derivative propagation matrix is given by

Da = b
[
R(za)−aRaa]−1

Rab . (6.107)

We can use Eq. (6.106) to find the derivative vectors everywhere from some
initial derivative vector. This initial derivative vector can be found by
noting that Eq. (6.101) can be written

[
Rright(z0)−Rleft(z0)

]
d = 0d. (6.108)

So, we can find an initial derivative vector as the eigenvector of the matrix
Rright(z0)−Rleft(z0) that belongs to the eigenvalue 0.

6.4.3 Summary of R-matrix Method
Here we give a short of summary of how the different methods described
in this chapter are combined to exactly solve the TISE (4.1). The contents

4In the numerical implementation the diabatic basis [Eq. (6.1)] is found using a
sine-DVR basis in R , and a sine-DVR basis in z is then used to solve the coupled Eqs. (6.4).
This method of first doing one partial diagonalization before the full diagonalization is
called pre-diagonalization.
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of this section is taken from Ref. [1]. To solve Eq. (6.4), which is a projected
version of the TISE, we use the R-matrix propagation technique. This
method consists of dividing the z axis into a series of sectors. A spatial Leg-
endre DVR [25] basis is chosen in each sector, and the local Hamiltonian is
diagonalized by means of the SVD method [26]. Based on this diagonaliza-
tion the R-matrix can be propagated from sector to sector. Details of this
is described in the appendix of [9].

Before we can propagate the R-matrix we need some initial R-matrix.
This is obtained asymptotically. Since the channel equations (6.4) decou-
ple in the large |z| limit the R-matrix is diagonal and has the form

Rv v ′(z;E)||z|→∞ = fv (z)
d

d z fv (z)
δv v ′ . (6.109)

The coefficient function fv (z) and its derivative can be found in this asymp-
totic region using the asymptotic expansion of App. A.

The method we employ is the following; first we pick some initial en-
ergy based on a direct diagonalization of the field-free Hamiltonian. Then
we take a small step in field strength and find the asymptotic R-matrices at
the right and left ends of our box. These are then propagated through the
sectors until they meet at some matching point x0 near the center of the
box. Since the potentials considered are smooth, the coefficient functions
must be continuous and their derivatives like so. This implies that the
matrix difference of the R-matrices propagated from the left and from
the right must have a zero eigenvalue, such that this difference matrix is
singular

det
[
Rleft(z0;E)−Rright(z0;E)

]= 0. (6.110)

We then find the zero of this determinant by doing a simple Newton search
with the energy E as variable. In each step a new guess for the energy is
obtained, which is then used to construct the asymptotic R-matrices etc.
This proceeds until the energy giving the zero eigenvalue is found. Then a
new step in F is made and the procedure is repeated, this time using the
present energy as a guess for the new energy.

6.5 Complex Rotation
As a supplement to the R-matrix propagation method described above I
have also used the complex rotation method. This consists of rotating the
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electron coordinate z into the complex plane, in such a way that all the
boundary conditions for the wave function gives a decaying wave function
for |z|→∞. This allows us to do a diagonalization in a box, which is a lot
simpler and easier to implement than the R-matrix method. The trade-off
is that complex rotation only yields a total rate, and not partial rates, or
a wave function for that matter. In this thesis complex rotation has been
used as a crude tool to test whether the R-matrix propagation is working
correctly, by checking that the total rates obtained with the two different
methods are the same.

In the complex rotation method we consider the electronic coordinate
as a complex variable. In order to use the complex rotation method we
must require that the potential V (z,R) is holomorphic in z. Then the wave
function and its double derivative should also be holomorphic and can be
analytically continued to the complex z plane. We write the TISE (4.1) in
the form

HΨ

Ψ
= E . (6.111)

Except for any possible zeros ofΨ, the left hand side in this expression is
holomorphic, and so is the constant E . The identity theorem for holomor-
phic functions then gives us, that since Eq. (6.111) is fulfilled for real z (and
the real axis definitely contains at least one accumulation point), it must
be fulfilled for all complex z, when using the analytic continuation ofΨ.
Since the energy is constant on the real axis of z, it must also be constant
in the full complex z plane.

The energy is defined not only by the TISE, but also by the boundary
conditions Eqs. (4.16) and (4.17). These can also be analytically continued
to the complex z plane. In complex rotation we choose to consider a
particular line of the complex z plane, at an angle θ to the real axis. This
we can write

z = xe iθ, (6.112)

where x is a real variable and θ is a constant. Inserting this in the Hamilto-
nian (4.2) yields

H CR =− 1

2M

d 2

dR2
− 1

2m
e−i 2θ d 2

d x2
+F

(
QR +qxe iθ

)
+U (R)+V (xe iθ,R).

(6.113)
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The boundary conditions Eqs. (4.16) and (4.17) becomes

f (xe iθ)|x→−∞ = m1/4

(2F q(−xe iθ))1/4
(6.114a)

×exp

[
i

(2m)1/2

(F q)1/2

(
2

3
F q(−x)3/2e i 3θ/2 +Ez(−x)1/2e iθ/2

)]

f (xe iθ)|x→∞ = m1/4

(2F qxe iθ)1/4
exp

[
− (2m)1/2

(F q)1/2

(
2

3
F qx3/2e i 3θ/2 −E 1/2

z xe iθ/2
)]

.

(6.114b)

We would like these to decay in the limits |x|→∞. Whether this happens
is determined by the real part of the exponential. If it is negative we have
decay, if it is positive we have growth. In the |x|→∞ limits the exponent
in both Eqs. (6.114a) and (6.114b) are dominated by the first term. The
real part of this term in the x →−∞ limit is

Re

(
i

(2m)1/2

(F q)1/2

2

3
F q(−x)3/2e i 3θ/2

)
=−sin

(
3θ

2

)
(2m)1/2

(F q)1/2

2

3
F q(−x)3/2.

(6.115)

For this to be negative we must require that

sin

(
3θ

2

)
> 0. (6.116)

Similarly for the limit x →∞

Re

(
− (2m)1/2

(F q)1/2

2

3
F qx3/2e i 3θ/2

)
=−cos

(
3θ

2

)
(2m)1/2

(F q)1/2

2

3
F qx3/2, (6.117)

so here we must require

cos

(
3θ

2

)
> 0. (6.118)

We note that the conditions (6.116) and (6.118) are fulfilled by angles in
the range

θ ∈
[

0,
π

3

]
. (6.119)

So, if we choose an angle θ in the interval (6.119) the wave function
decays in both the x →∞ and x →−∞ limits, and we can use a box of
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finite size in x to diagonalize the complex Hamiltonian (6.113). In cases
where the potential asymptotically goes to zero rather than having the
form F x, the choice of the rotation angle θ that ensures asymptotic decay
of the wave function depends on the angle that the complex energy makes
with the real energy axis. One says that the θ angle should be chosen
such that it exposes the given complex energy. In our case the F x term
dominates over the energy term in the asymptotic potential and therefore
in the asymptotic wave function, so we do not need to consider the energy
at all when choosing θ.

In the exact analytic formulation the choice of θ does not matter, as
long as we choose it in the interval (6.119), the wave function will decay.
In a numerical calculation the precise choice of θ can be more important,
since the choice of θ determines how fast the wave function decays. It
should thus be chosen such that the wave function has decayed sufficiently
when it reaches the boundary of the box.

Another important thing to keep in mind when doing a numerical
calculation is that we must inevitable use a finite, truncated basis, and the
use of such a basis introduces spurious solutions that do not correspond
to physical states. For a normal, real diagonalization (where θ = 0) of a
Hermitian Hamiltonian this is usually not a big problem; since such a
method is variational the eigenvalues are nicely ordered and the spurious
states should only appear high up in the spectrum. However, when the
Hamiltonian has undergone a complex rotation, it is no longer Hermitian
and all bets are off. The spurious states can now come close to the physical
states in energy, and we should be quite careful with how we sort the
energies, to make sure that we correctly assign an energy to a given state.

Let us assume that we have done a set of complete complex rotation di-
agonalizations at a series of equidistant field strengths Fi = i∆F , i = 0,1, . . . .
For each F we have a set of energies Ek (Fi ). At F = 0 these energies are
ordered by the normal ordering of the real numbers E0(F0) < E1(F0) < ·· · <
En(F0) < En+1(F0) < ·· · . At each F the energies are assigned to a particu-
lar state n by choosing the state that has the minimal complex distance
|Ek (Fi )−En(Fi−1)| to the state n at the previous field strength, starting at
F = 0. If the distance between field strengths∆F is too large this procedure
fails when two energies cross or come too close to each other. A refinement
of the method uses a linear projection from the previous field strength,
such that the distance |Ek (Fi )− (En(Fi−1)+ [En(Fi−1)−En(Fi−2)])| should
be minimal instead.

In this section we have only considered rotations of the electronic
coordinate z, and not the nuclear coordinate R. This is because we do
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not specify any asymptotic boundary conditions for the R coordinate,
that is, we consider a continuum in the R coordinate. We could also
have chosen to impose outgoing-wave boundary conditions in the R-
coordinate (Siegert state boundary condition), and then we could use
complex rotation in the R-coordinate by following the same procedure as
described above.



7 Bound Ionic States

In this chapter we consider U (R) potentials with no continuum. This
means that the molecule cannot dissociate, and after ionization the mole-
cule is in a bound ionic state. Large parts of the material in this chapter is
the same as in Ref. [1], of which I am first author.

7.1 Model Potentials
In this section the analytic form of the model potentials used to describe
the interaction between the nuclei U (R), and the effective one-electron
potential V (x,R), are presented.

The internuclear interaction is modeled by the potential

U (R) = A

R2
+B +C R2, (7.1)

with coefficients A = 0.26,B =−0.732635 and C = 0.01625. These parame-
ters were chosen such that this potential reproduce the minimum of the
BO potential of H+

2 , as shown in Fig. 7.1. This inter-nuclear potential is
strictly binding and does not allow for dissociation of the molecule. It is
identical to the one used in Refs. [1, 10].

The interaction between the nuclei and the electron is of the form (4.3).
In Ref. [10] a finite-range potential (FRP)

Vi (z) =− a

cosh2(bz)
, i = 1,2, (7.2)

with parameters a = 0.62772 and b = 0.857 was used. In this chapter we
additionally consider a Coulomb-tail potential (CTP). It has the form

Vi (z) =−qi
1−de− f z2

p
z2 +a2

− ce−bz2
, i = 1,2, (7.3)

88
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Figure 7.1: Blue curve: BO potential of 3D H+
2 [27].

Red curve: Model potential of the molecular ion U (R)
[Eq. (7.1)], with the vibrational states ϕv (R) that solves
Eq. (6.1) superimposed. Blue indicates positive values of
ϕv (R), red indicates negative values.

with parameters a = 1,b = 5.46,c = 0.931,d = 0.633, f = 0.0402 and q1 =
q2 = 0.5. These parameters, as well as those for Eq. (7.2), are chosen such
that the BO potential reproduces the BO potential of H2 [lower (black)
lines in Fig. 7.2]. Since we use a SAEA in this description of H2, the H+

2
described by the U (R) potential that appears when the active electron has
left has no active electrons.

Although the two FRP and CTP models result in a similar behavior of
the BO potentials, they are very different in nature. The FRP (7.2) vanishes
exponentially fast at large |z|, while the CTP (7.3) takes the form

V (z,R)|z→±∞ =−q1 +q2

|z| . (7.4)

The potentials also have different behavior at small |z|. Figure 7.3 shows
the FRP and CTP at the H2 equilibrium distance R0 = 1.4 and illustrates
the qualitative difference, as the FRP has one minimum, whereas the CTP
has two.

When the field is non-zero, two distinct classically allowed regions
appear. An inner one in the potential well around the nuclei and an outer
one in the negative z-direction extending towards minus infinity. As long
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Figure 7.2: Blue lines: BO potentials for H2
+ [27] and

H2 [28, 29] as functions of the inter-nuclear distance
R. Red line: present model inter-nuclear potential U (R)
[Eq. (7.1)]. Green line: BO potential for the three-body sys-
tem U (R)+Ee (R;0) using the FRP [Eq. (7.2)]. Purple line:
U (R)+Ee (R;0) using the CTP [Eq. (7.3)]. Shaded areas:
lowest vibrational state ϕ0(R) (upper) and BO vibrational
ground state χ(R) (lower, Eq. (4.60b)) using the CTP.

as these regions are separate we have under-the-barrier ionization, since
the electron has to tunnel through a barrier in order to get from the inner to
the outer classically allowed region. For sufficiently large field strengths the
two regions merge and we have over-the-barrier ionization. By considering
plots of the iso-contour V (z,R)+U (R)+ (QR + qz)F = Re[E(F )] we can
determine the critical field at which we switch from under-the-barrier to
over-the-barrier ionization.

7.2 Results
In Sec. 7.2.1 we consider the FRP and CTP models for H2 with q1 = q2 = 0.5,
since the charge of the passive electron is distributed across the molecule,
and m1 = m2 = 1836. The goal is to investigate the effect of the Coulomb
tail on the wave function and the ionization rate. In Sec. 7.2.2 we consider
non-symmetric CTP models for polar molecules and investigate the effect
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Figure 7.3: Red (blue) line: the FRP [Eq. (7.2)] {CTP
[Eq. (7.3)]} at R0 = 1.4. Shaded red (blue) area bounded
by red (blue) line: ground-state electronic wave function
at this R0 for the FRP (CTP), the horizontal black line is at
the electronic energy Ee (R0;0) of these ground states (the
energies are indistinguishable on the scale of the figure).
The gray shaded area indicates the classically forbidden
region.

of the dipole.

7.2.1 Non-polar Model H2: Finite-range vs.
Coulomb-tail Potential

The upper panel of Fig. 7.4 shows the real part of the energy of the SS
that is the analytic continuation along the real F -axis of the field-free
ground-state for the two model potentials. For F = 0 the energies of the
ground state for the two potentials are close to each other, E =−1.163269
for FRP and E =−1.165766 for CTP, but as F increases the energy for the
CTP becomes lower than that for the FRP. The change of slope of the
CTP energy curve at around F = 0.15 is due to an avoided crossing with a
vibrationally exited state. The energy of the lowest vibrational state of the
molecular ion to which the molecule can ionize is ε0(0) =−0.5966. The
lower panel of Fig. 7.4 shows the rate obtained from Γ=−2Im(E) for the
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Figure 7.4: Upper panel: Real part of the energy E = Re(E ),
for the SS that is the analytic continuation of the field-free
ground-state for the FRP [Eq. (7.2)] and CTP [Eq. (7.3)].
Lower panel: The exact rates Γ = −2Im(E) for the same
states.

same state as in the upper panel. The avoided crossing in the CTP curve
is not seen since the plot is on a logarithmic scale. The figure shows that
the rate is lower for the FRP than for the CTP. The rates obtained from
these R-matrix calculations have been verified by use of a complex rotation
calculation.

In Fig. 7.5 energies obtained with the R-matrix propagation and com-
plex rotation methods for the CTP are compared. They are seen to com-
pletely overlap. In this figure we also see the avoided crossings near
F = 0.15. The details are somewhat difficult to make out in this figure,
so Fig. 7.6 shows a zoom near this field strength. Here we see that the real
part of the energy of the ground state crosses the real part of the energy
of the first and second exited state. Since the lines cross, there must be a
point where the two states have the same energy and are degenerate, so
how do we know which state is which after the crossing? Where the states
cross in the real part of the energy they are not close to each other in the
imaginary part of the energy, so when we consider the complex nature of
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Figure 7.5: Real and imaginary part of energies for the
CTP. The colored lines show the R-matrix calculations for
the lowest 4 states. The gray lines show the results of a
complex rotation calculation for the lowest 8 states, where
higher states are more transparent. They completely agree
with the R-matrix results, so the lowest 4 complex rotation
states are hidden behind the R-matrix lines.
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Figure 7.6: Same as Fig. 7.5, only zoomed and without the
complex rotation energies.

the energies the states are clearly distinguishable. We may additionally
observe that whenever there is a crossing in the real part of the energy,
there is an avoided crossing in the imaginary part, and vice versa. The
avoided crossings which look like the states are repelling each other are not
always visible, particularly if the states are some distance from each other
in the relevant energy component. At the crossing between the field-free
ground state and second exited state near F = 0.15 the imaginary energies
are quite close to each other, and the avoided crossing clearly modifies the
form of the energy curve.

Another way to visualize the results of the complex rotation is by plot-
ting the solutions in the complex energy plane for fixed F . This is shown
in Fig. 7.7. At F = 0 all solutions where the imaginary part of the energy
is different from zero can clearly not represent a physical state, and any
such solutions must be artificial, spurious solutions introduced by the
truncated basis. As F is increased from zero the energy of these spurious
states change rather quickly compared to the physical states. Some of the
spurious states move to larger values of ReE , some move to smaller, but
the details of the complicated dynamics of these spurious is difficult to
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Figure 7.7: Energies of complex rotation solutions for se-
lected field strengths. The colored dots indicate the 4 states
that at F = 0 has the lowest real part of the energy. For
these 4 states traces are shown that indicate their energies
at smaller F . In Adobe Acrobat Reader, clicking this figure
will show an animation.
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Figure 7.8: Energies of complex rotation solutions for se-
lected field strengths, as in Fig. 7.7, but for different F and
E . In Adobe Acrobat Reader, clicking this figure will show
an animation.

capture with snapshots like those in Fig. 7.7. For sufficiently large F the
spurious states moving towards smaller ReE will have ReE comparable to
or smaller than the physical states, which will give problems if one sorts
the energies according to ReE .

The avoided crossings of the states around F = 0.15 is shown as snap-
shots in F in Fig. 7.8. Here we see that the traces of the states cross, and for
some values of F the real part the energy of some of these states coincide,
but there is no value of F such that both the real and imaginary part of the
energy coincides simultaneously.

Interestingly it seems that the nodal structure in the R coordinate
reflects the ordering of the real part of the energy. This is shown in Fig. 7.9.
The first column, e.g., shows how the state that is the analytic continuation
of the ground state, changes from having no nodes at F = 0.11 to having 2
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divided by the field factor for the zeroth channel W0(F )
[Eq. (4.58a)]. Black lines are exact rates, blue lines are
WFAT rates and red lines are BO rates. Arrows indicate
the boundary of the region of validity of the BO approxi-
mation [Eq. (4.90)]. (a) is for the FRP [Eq. (7.2)] and (b) is
for the CTP [Eq. (7.3)].

nodes at F = 0.18. At this larger field strength it is the second exited state
when considering the real part of the energy [Fig. 7.5]. The other states are
seen to also change their nodal structure, such that it consistent with the
ordering of the real part of the energies.

The exact ionization rates are shown in Fig. 7.10, together with BO and
WFAT rates. The BO rates were obtained from ΓBO = −2Im(EBO), where
the BO energies EBO were obtained by solving the BO Equations (4.60).
For the FRP the field strength at which we expect the BO approximation
to break down [Eq. (4.90)] is FBO ≈ 0.05, whereas for the CTP it is around
FBO ≈ 0.04. The difference is due to differences in the curvature of the BO
curve U (R)+Ee (R;0), this difference is also evident in Fig. 7.2. In Fig. 7.10
we see that the BO approximation indeed works well for F > FBO, but fails
for F < FBO, as discussed in Sec. 4.4.4.

The WFAT rate is the sum of the partial rates [Eq. (4.59)]. The critical
field at which we switch from under-the-barrier to over-the-barrier ioniza-
tion has been estimated by the method described in the end of Sec. 7.1 to
be about 0.1745 for the FRP and 0.247 for the CTP.

Figure 7.10(a) shows total rates for the FRP. This potential was also
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used in Ref. [10], and the results are the same. One remarkable feature in
Fig. 7.10(a) is that the exact and WFAT results agree over a very large range
of F , up to around F = 0.1. Figure 7.10(b) shows the corresponding rates for
the CTP. Here the exact and WFAT rates start to differ at somewhat smaller
F , around 0.02. One might be tempted to conclude that the difference
between these potentials is entirely due to the Coulomb-tail, but other
factors also play a role, as will be explained.

We have made additional calculations with a modified version of the
CTP to investigate the role of the long-range part of the potential in the
accuracy of the WFAT approximation. This modified CTP is the same as the
CTP within 10 a.u. of the origin, but outside these 10 a.u. the potential is
multiplied by a Gaussian such that it quickly goes to zero. This augmented
potential is hence the same as the CTP at short range where most of the
wave function is located, but it does not have a Coulomb-tail. The results
of these calculations, which are not shown in the figures, show that the
exact and WFAT rates depart from each other as fast as for the CTP, so the
difference in performance of the WFAT between the FRP and CTP is not
exclusively due to the Coulomb tail.

The form of WFAT considered in this work is called zeroth-order WFAT,
since it only considers the wave function to zeroth order in the field. In
Ref. [30] the first-order WFAT is developed. In that theory first-order field
corrections to the wave function are considered. Determining these first-
order corrections is tedious and beyond the scope of this work. Never-
theless, we can make a comment on the size of these corrections. The
asymptotic coefficients Cv in terms of which the partial rates Γv = |Cv |2
are defined [Eq. (4.27)] can be obtained exactly from the R-matrix prop-
agation, since we can construct the wave function. These exact partial
rates are compared to their WFAT counterparts in Fig. 7.11. The curves in
this figure show Γv /ΓWFAT

v , so from Eq. (4.57) we see that this corresponds
to 1+O(F ). The error of WFAT for each channel is thus shown by how
much each curve departs from unity. In the F → 0 limit all these curves
should approach unity, which they indeed do. Interestingly, we see that
the partial rate ratios for the FRP have a very small slope as they approach
F = 0, while the partial rate ratios for the CTP have a larger slope. This
directly shows that the first-order WFAT corrections are larger for the CTP
than for the FRP.

A number of factors contribute to the first-order WFAT correction,
one of them is wave function distortion caused by the external field [30].
Figure 7.12 shows the wave function in the FRP and CTP at F = 0.06,
which, as indicated by the shaded gray area in the figure, corresponds
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Figure 7.11: Exact partial rates Γv = |Cv |2 divided by the
WFAT partial rates ΓWFAT

v [Eq. (4.57)]. The red line is the
first channel, the rest follow in order downwards. The
dotted horizontal line is a guide for the eye. (a) is for the
FRP [Eq. (7.2)] and (b) is for the CTP [Eq. (7.3)].

to under-the-barrier ionization. The figure shows the part of the wave
function in the central potential well and the exponential decay in the
classically forbidden region from the boundary of the well to around z ≈ 10.
This classically forbidden region contains the matching region used in
WFAT to match the field-free and weak-field wave functions. The figure
also shows the oscillating outgoing wave extending from the boundary
of this tunneling region to −∞. In the central part of the potential the
wave function is more asymmetric in the CTP than in the FRP. Also the
magnitude of the outgoing wave is different. The wave function is thus
distorted more for the CTP than for the FRP. We would therefore expect
that this contribution to the first-order WFAT correction is larger for the
CTP than for the FRP. The cause for the difference in wave function field
distortion between the FRP and CTP is to be found in the form of the
potentials. From Fig. 7.3 it is evident that the CTP is lower in the region
away from the nuclei than the FRP. It is therefore easier for the wave
function to reach this region when the field is applied; a fact reflected in
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Figure 7.12: Real and imaginary parts as well as norm
square of the wave function at F = 0.06 in the under-the-
barrier regime. The outgoing wave is smaller than the part
of the wave function closer to the nuclei, so for z <−5 the
wave function has been multiplied by a factor of 200 or 30
to make it visible.
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the size of the ionization rate, which is larger for the CTP than the FRP (see
Fig. 7.4).

Figure 7.13 show the wave function for the two potentials at larger field
strengths, corresponding to the over-the-barrier regime. Here the inner
and outer classically allowed regions have merged, and the wave functions
therefore go directly to oscillating outgoing waves.

Figure 7.14 shows a peculiar case. At a field strength of F = 0.18 the
two classically allowed regions of the FRP potential are joined, however
the majority of the wave function is located at R sufficiently small that the
electron still has to tunnel in order to escape from the nuclei.

In summary, it appears that the agreement between the exact and
WFAT results over an extended interval of F in the case of the FRP is
specific for this potential and is likely related to the small amount of wave
function distortion for this potential.

7.2.2 Polar Model Molecules: Dipole Effects
A non-zero dipole moment can be introduced in the CTP model by choos-
ing q1 6= q2. We still consider the system in an inertial frame1 and thus
require q1 + q2 = 1. The case q1 = q2 = 0.5 corresponds to symmetry in
z and the total dipole moment µ is 0 in this case. Note that even when
q1 = 0 the potential still has two centers, due to the second term of Eq.
(7.3). Figure 7.15 shows the exact rates obtained from calculations using
different values of q1, with q2 = 1−q1, and in Fig. 7.16 the exact rates are
compared to their BO and WFAT counterparts.

The effect of a non-zero dipole moment on the rate is determined
mainly by two effects corresponding to the two factors in Eq. (4.58b). One
is that the energy is shifted down when the dipole and the field are parallel,
see Eq. (4.34), which should cause the ionization rate to decrease, since
the electron then has to cross a higher tunneling barrier. Conversely, if
the dipole and field are anti-parallel the rate should be larger. The other
effect is due to the shape of the electron distribution. When the dipole and
the field are parallel the majority of the electron is located closer to the
tunnel exit, and is therefore more likely to tunnel through, giving a larger
rate. Conversely, when the dipole and field are anti-parallel the majority
of the electron is away from the tunnel exit and the rate is smaller. These
two effects act opposite to each other. From Fig. 7.15 it is evident that the

1If we choose q1 +q2 6= 1 the net charge of the whole three-body system would be dif-
ferent from zero, and the external field would give the center-of-mass a net acceleration,
making the center-of-mass frame non-inertial.
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Figure 7.13: Real and imaginary parts as well as norm
square of the wave function that is the analytic contin-
uation of the field-free ground states at F = 0.26 in the
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Figure 7.15: Exact real part of the energy and ionization
rates for different dipoles using the CTP [Eq. (7.3)]. For q1 <
0.5 the dipole and the field are parallel, for q1 > 0.5 they
are anti-parallel. The real part of the energy has a slope
at F = 0 given by the dipole moment µ of the associated
field-free state.

size of the rate is largest when the dipole and the field are parallel, so we
conclude that in this case the electron distribution effect is larger than the
energy-shift effect. This is similar to experimental findings in CO [31–33].

We see that, as the dipole increases, the WFAT rate departs from the
exact rate for smaller F . This behavior is expected. In the WFAT derivation,
see Eq. (4.38), we neglected terms in the potential of order O(z−2) or higher,
which is consistent with the leading-order approximation in F. In the non-
dipole case no O(z−2) terms exists in the potential so what we neglect
in the potential is of order O(z−3) or higher. In the dipole cases, on the
other hand, a term of order O(z−2) is present in the potential, and what
we neglect in WFAT is therefore of greater importance [this contributes to
the term O(F ) in Eq. (4.57)]. In all cases we obtain the expected behavior
from BO; agreement at F > FBO ≈ 0.04 but difference at F < FBO.

Figure 7.17 shows the partial rates for the different dipole cases. We
see that the slope of these curves near F = 0, which is the same as the
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first-order WFAT correction, is indeed smallest for the non-dipole q1 = 0.5
case, and increases for larger dipole moments.

7.3 Conclusion
The present study has extended previous work on the tunneling ionization
of molecules in a 1D model with electronic and nuclear motions treated
exactly within the limitations of the model [10]. The theory has been gener-
alized to deal with potentials that has a Coulomb-tail, and non-symmetric
potentials with non-zero dipole moments modelling the tunneling dynam-
ics in polar molecules. We have shown that inclusion of a Coulomb-tail
in the potential and non-zero dipole moments do not change the main
conclusions of Ref. [10], namely that the BO approximation breaks down
for fields F < FBO, but works for F > FBO [Eq. (4.90)], and that WFAT works
in the weak-field limit. The agreement between the WFAT and exact re-
sults over an extended interval of F , seen here and in Ref. [10], seems to
be particular for the finite-range model potential and due to the small
amount of field distortion for this potential.
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8 Dissociative Tunneling Ionization

Large parts of the material in this chapter is the same as in Ref. [2], of
which I am first author.

8.1 Illustrative 1D Calculations
In this section we compare exactly calculated KER spectra with those ob-
tained through the BO approximation [Eq. (4.73)] and the WFAT [Eq. (4.57)].
In the following we will consider a model of H+

2 as an example. The poten-
tials we consider are

U (R) = 1

R
, (8.1a)

V (z,R) =−
∑
±

1√(
z ± R

2

)2 +a(R)
, (8.1b)

and m1 = m2 = 1836, q1 = q2 = 1. The interaction between the nuclei and
the electrons V (z,R) is described by a soft-core Coulomb potential (SCP).
The function a(R) is chosen in such a way that the BO potential derived
from this potential reproduces the BO potential energy curve of 3D H+

2
[34–36], see Fig. 8.1 [also see App. E].

The process we consider in this chapter is dissociative tunneling ion-
ization. Another dissociative process is direct dissociation, where the
electron stays with one of the nuclei after they have separated. When the
field is not too strong this process can be pictured as the nuclei tunneling
through a barrier in the BO potential. We can think of the electronic energy
as a sampling of the electron-nuclear potential with the norm square of
the electronic wave function as weight factor. This electronic wave func-
tion is mainly located in the two wells of the electron-nuclear potential
around z + R

2 = 0 and z − R
2 = 0 [see Fig. 8.2]. When a positive electric field

is applied, the electron will prefer to stay in the lower well around z+ R
2 = 0.

109
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Figure 8.1: BO potential of 3D H+
2 [27] (dashed red line),

and the BO potential U (R)+Ee (R ;F = 0) obtained from the
potentials (8.1) (blue line). The green line shows the soft-
coulomb parameter used in the potential (8.1b) to give the
blue curve.

The potential contribution from the field in this well is qF z =−qF R/2, so
for sufficiently large R, the electronic energy takes the form EH −qF R/2,
where EH is the energy of hydrogen in the present field. As F is increased,
the barrier in the BO potential, through which the nuclear wave function
has to tunnel, grows smaller and eventually disappears. In our numerical
scheme we cannot treat this direct dissociation channel since we use a
box in the R-coordinate, on the boundary of which we assume the wave
function to be zero. The large mass of the nuclei means, however, that
this process can be neglected for low field strengths, where dissociative
tunneling ionization will dominate.

A way to treat this pure dissociation channel could be to apply the
R-matrix propagation scheme to the nuclear BO Equation (5.53b). The
pure dissociation becomes a size-able channel for larger field strengths,
so the BO should be applicable.

8.1.1 From Wave Function to KER Spectrum
Figure 8.3 illustrates how the BO approximation can be used in conjunc-
tion with the reflection principle to determine the KER spectrum. The
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figure shows a calculation for the ground state of the H+
2 model at F = 0.034.

The field dressed nuclear wave function
∣∣χ(R)

∣∣2 is multiplied by the elec-
tronic rate Γe (R). The exponential dependence of the electronic rate Γe (R)
on the internuclear coordinate means that the product Γe (R)

∣∣χ(R)
∣∣2 {see

[Eq. (4.73)]} has its maximum at a value of R ≈ 3, which is significantly dif-
ferent from the maximum of the bare nuclear wave function at R0 ≈ 2. This
in turn means that the transition to the continuum, which is determined
by the product Γe (R)

∣∣χ(R)
∣∣2 and not the bare nuclear wave function, is

far from ’vertical’ in R with respect to the initial nuclear wave function,
and the spectrum peaks at a lower energy around 1/R ≈ 0.33 and not at
1/R0 ≈ 0.5.

Using WFAT within the BO approximation we can determine in which
direction the maximum of the spectrum shifts when the field is varied.



8.1 Illustrative 1D Calculations 112

-0.50

-0.25

0.00

0.25

0.50

1 2 3 4 5

10−25

10−20

10−15

10 −
25

10 −
20

10 −
15

P
(k

)

2
π ∣∣∣

∂R
t

∂k ∣∣∣ Γ
e |χ| 2

E
R
=

k
2

2M
(a

.u
.)

R (a.u.)

|χ(R)|2
|χ0(R)|2

U (R)

U
(R

)+
E

e
(R

,F
)

H+p+

p++p+

Γe (R)|χ(R)|2
Γe (R)

Figure 8.3: The field dressed nuclear wave function
∣∣χ(R)

∣∣2

[light blue shaded area in the lower U (R)+Ee (R;F ) BO
curve] is multiplied by the electronic rate Γe (R) (red line)
and reflected in the dissociative U (R) BO curve to give
a KER spectrum (solid blue line in upper right corner,

[Eq. (4.73)]), using the relation U (R) = k2

2M to translate k
into R. This is compared to the exact KER spectrum P (k)
(red dashed line, [Eq. (4.27)]). A field strength of F = 0.034
was used for the calculations shown in this figure. The solid
gray line in the lower part of the figure shows the field-free
nuclear wave function

∣∣χ0(R)
∣∣2. The surface plot in the up-

per part of the figure shows the continuum states g (R,k)
of the U (R) potential, these are solutions of Eq. (4.7b).
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Under these approximations the main dependence of the electronic rate

on the field is contained in the exponent −2κ3(R)
3F , see Eq. (4.78). The elec-

tronic energy Ee (R;F = 0), in terms of which κ(R) is defined, generally
depends very much on the system considered. In the case of H+

2 it is a
monotonically increasing function of R, since when the two potential
wells around each of the nuclei start to overlap the electron is more tightly
bound. This in turn means that the electronic rate is an increasing func-
tion of R, as can also be seen in Fig. 8.3. When the strength of the field

increases, the exponent −2κ3(R)
3F grows, but at the same time the slope of

this exponent with respect to R decreases, since κ3(R) is multiplied by a
smaller number. The smaller slope means that the location of the max-
imum of the product Γe (R)

∣∣χ(R)
∣∣2 is shifted less from the maximum of∣∣χ(R)

∣∣2 as the field strength increases, and conversely, as the field strength

is decreased the maximum of the product Γe (R)
∣∣χ(R)

∣∣2 is shifted more to-
wards larger R . These shifts are directly reflected in the spectrum, which is
given as the reflection of the Γe (R)

∣∣χ(R)
∣∣2 product in the BO and reflection

approximations.
Figure 8.4 shows KER spectra obtained using as initial state the first

vibrationally excited state of H+
2 . This is the lowest state with a non-trivial

nodal structure in R. In the figure two different field strengths are con-
sidered. In the top panel we see that the nodal structure of the nuclear
wave function is reflected in the KER spectrum, although one peak is a
lot larger than the other. This asymmetry can be understood in the BO
approximation, see Eq. (4.73), as due to the fact that the electronic rate
Γe (R) has an exponential dependence on R. In the WFAT it can be un-
derstood as resulting from the exponential dependence of the field factor
[Eq. (4.58a)] on k. For the lower field strength the structures at ER > 0.4 are
not visible as the KER spectrum falls below the numerical precision limit
of our calculation.

For the large field strength [Fig. 8.4(a)] we see that the BO KER spectrum
has a shape much closer to the exact KER spectrum than for the lower
field strength. Also the maximum value of the BO KER spectrum is more
than an order of magnitude closer to the maximum value of the exact
KER spectrum for the larger field strength, see the caption of Fig. 8.4. The
two field strengths of Fig. 8.4 lies on either side of the critical BO field
[Eq. (4.90)], which for the system under consideration is FBO = 0.0315. As
we increase the field strength further the BO gives even better results.

For the lower field strengths, where BO fails, we can apply the WFAT. In
Fig. 8.4 we see that the shape of the WFAT KER spectrum indeed is closer
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to the exact KER spectrum than the BO KER spectrum for the weaker field
strength, and it is also closer in magnitude to the maximum value. For the
larger field strength the WFAT KER spectrum is further from the exact KER
spectrum in both shape and magnitude.

8.1.2 From KER Spectrum Back to Wave Function
The field dressed nuclear wave function can be imaged from a measure-
ment of the KER spectrum by inverting Eq. (4.73) for fields sufficiently
large that the BO approximation applies. To demonstrate this we have
taken the exact KER spectrum from our calculation at F = 0.034 for the
first vibrationally excited state and divided it by the Jacobian factor and the
electronic rate to obtain an image of the nuclear density. Since an experi-
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Figure 8.5: From the exact KER spectrum P (k) [upper
right corner, Eq. (4.27)] at F = 0.034 the magnitude of
the asymptotic wave function has been found by revers-

ing the reflection principle, giving P (k)/
(
2π

∣∣∣dR
dk

∣∣∣
)
, using

the relation U (R) = k2

2M to translate k into R. From this,
the field-dressed nuclear wave function has been imaged
by dividing with the electronic rate Γe (R) and normaliz-
ing. In the lowest part of the plot, the dashed (purple)
line shows this imaging using the exact electronic rate
Γe (R) = −2Im[Ee (R;F )], the red line shows the imaging
using the BO WFAT approximation ΓWFAT

e (R) [Eq. (4.78)].
The solid gray line shows the field-free nuclear wave func-
tion

∣∣χ0(R)
∣∣2. The shaded (light blue) area shows the field-

dressed nuclear wave function
∣∣χ(R)

∣∣2. The surface plot in
the upper part of the figure shows the continuum states
g (R,k).
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mental KER spectrum is typically not known on an absolute scale, we have
then normalized this quantity. In a calculation on a more complicated
system than the one considered here the exact electronic rate is often not
available, so we also show the result using the WFAT approximation for
the electronic rate [Eq. (4.78)]. The results are compared to the nuclear
wave function known from the calculation in our model in Fig. 8.5. They
do not agree perfectly, but the nodal structure is correctly reproduced.

For smaller field strengths, where the BO is not applicable, this type of
imaging is not possible. The KER spectrum, however, does give us access
to the asymptotic wave function, as it is the norm square of the expansion
coefficients of this, see Eq. (4.18). For the cases we have looked at, the
phase of the asymptotic coefficient C (k) varies very little over the range
where it has support. In our model we have access to the full wave function,
and this we show in Figs. 8.6-8.7. The imaging through the 1D equivalent
of Eq. (4.18) would only give access to the part at large negative z.

In the classically allowed region at large negative z the maximum of
the wave function follows a classical trajectory. This is a prediction of the
WKB theory, which applies as long we are not too close to the turning line.
The classical trajectories can be found using Newton’s second law

mz̈ + ∂

∂z
V (z;R)+F q = 0, (8.2a)

MR̈ + ∂

∂R
V (z;R)+ ∂

∂R
U (R) = 0. (8.2b)

A tempting choice of initial condition for the differential Eqs. (8.2) would be
to choose the (z,R) values at the intersection of the outer turning line and
the maximum ridge of the wave function, with zero velocity in both z and
R direction. However, the WKB fails near the turning line, and therefore
we cannot expect the wave function to follow a classical trajectory here.
Instead we have chosen as initial condition some point at the maximum
of the wave function at a large negative z value away from the turning line.
The influence of the V (z;R) potential can be neglected for sufficiently large
negative z, in this region we can write the separated energy conservation
equations

1

2
mż2 +F qz = E − 1

2M
k2, (8.3a)

1

2
MṘ2 +U (R) = 1

2M
k2. (8.3b)

The initial velocities have then been determined from Eqs. (8.3), using
the real part of the total (quantum) energy for E and the k at which the
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Figure 8.6: Real part of wave function normalized with the
electron density ρ(z) = ∫ |Ψ(z,R)|2 dR. Gray lines: Elec-
tronic turning lines Re[Ee (R;F )] =V (z,R)+F qz. Dashed
(red) lines: Full turning lines Re[E(F )] = V (z,R)+U (R)+
F qz. In the upper panels the dashed black line shows a
constant value that coincides with the maximum of the BO
wave function. In the middle panels the green line addi-
tionally shows a classical trajectory that coincides with the
maximum of the exact wave function. The black dot at the
end of the classical trajectory is the exit point (zkmax ,Rkmax )
determined from the maximum of the spectrum kmax (see
main text). The critical BO distance [Eq. (4.89)] is shown
with a vertical dashed line at −zBO =−32.9.
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Figure 8.7: Same as Fig. 8.6, only at a different field
strength.

KER spectrum P (k) [Eq. (4.27)] peaks. The classical trajectories shown in
Figs. 8.6-8.7 were found using such initial conditions, and then propagated
inwards.

From Figs. 8.6-8.7 it can be seen that contrary to the exact wave func-
tion, the position of the ridge of the BO wave function in R does not change
with z. This is expected as the BO approximation appears in the limit of
infinite nuclear mass, so classical motion in the nuclear coordinate is not
possible. The asymptotic wave function that we can image using Eq. (4.18)
is therefore a non-BO wave function.

It might seem strange that the BO is able to give the correct KER spec-
trum when the spectrum is the norm square of the expansion coefficients
of the asymptotic wave function, and the BO gives a wrong description
of this asymptotic wave function. However, the fact that the BO wave
function does not obtain a probability current (or velocity in the classical
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Figure 8.8: Absolute value of wave function normalized
with the electron density ρ(z) = ∫ |Ψ(z,R)|2 dR for F =
0.034. Solid grey lines: Full turning lines Re(E(F )) =
V (z,R)+U (R)+F qz. The long dashed red line shows for
each z the R at which the wave function |Ψ(z,R)| has its
maximum. The solid pink line shows a classical trajectory
[Eq. (8.2)]. The black dot at the end of the classical tra-
jectory is the exit point (zkmax ,Rkmax ) determined from the
maximum of the spectrum kmax (see main text). The short
dashed lines are the simple straight line estimates for the
tunneling and initial classical motion described around
Eq. (8.4).

picture) in the R-direction does not alter its projection on the continuum
states. The important point is whether the BO wave function is similar
to the exact wave function as it emerges at the outer turning line after
tunneling, and as we have seen, this is the case if the turning line is within
the critical BO distance zBO [Eq. (4.89)].

In Figs. 8.6-8.7 we also see that for the larger field strength the tunneling
is completed before the critical BO distance is reached, contrary to at the
smaller field strength. We see that for the large field strength the electronic
and full turning lines agree quite well in the region where most of the wave
function is localized, but for the smaller field strength they do not.
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8.1.3 A Refraction Phenomenon
One can notice that a phenomenon reminiscent of light refraction occurs
for the wave function around the turning line in Figs. 8.6-8.7. It is evident,
that the direction in which the maximum of the wave function ’moves’
changes noticeably at the turning line, when the wave function escapes
from the classically forbidden tunneling region into the classically allowed
region. The change of direction is due to the two different types of ’motion’
involved. When the wave function emerges from the tunneling region it
has essentially zero average velocity in the R direction. This means that
we can apply the reflection principle in reverse on the spectrum to find
the Rkmax coordinate at which the maximum of the wave function emerges

from the tunneling region by the relation U (Rkmax ) = k2
max

2M , where kmax is
the value of k for which the spectrum P (k) has its maximum. The z value
corresponding to this Rkmax can then by found by considering the turning
line V (zkmax ,Rkmax )+U (Rkmax )+F qzkmax = ReE .

In Fig. 8.8 we see that near the turning line the location of the wave
function ridge differs from the classical trajectory. This is expected, since
the prediction that the wave function ridge should follow a classical trajec-
tory comes from WKB theory, which fails near the turning line. Neverthe-
less, we can roughly describe the dissociative tunneling ionization process
in two steps. First the system tunnels from the central region around z = 0
to the exit point (zkmax ,Rkmax ). This motion can roughly be described by a

straight line from the maximum of the nuclear wave function
∣∣χ(R)

∣∣2 that
has the largest R value, since this is the maximum that will dominate the
tunneling, to the exit point. Notice that this tunneling is not simply the
electron tunneling out, but a correlated process involving both the elec-
tronic and nuclear degrees of freedom. In the classically allowed region
the initial direction of the wave function from the exit point can be found
from the classical trajectory: The initial slope of the classical trajectory
that starts at the exit point (zkmax ,Rkmax ) with zero velocity in both z and R
directions can be found to be

ż

Ṙ

∣∣∣∣
exit

= M

m

∂
∂z V (z;R)+F q

∂
∂R V (z;R)+ ∂

∂R U (R)

∣∣∣∣∣
(zkmax ,Rkmax )

. (8.4)

This is not exactly the trajectory that describes the motion of the wave
function ridge, but it is quite close. These two directions are different as
they come from different types of motion, and hence we see the refraction-
like phenomenon at the turning line.
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Figure 8.9: The red and orange curves show the f0 func-
tions defined in Eqs. (4.86). These functions depend only
on the field-free BO curves of H+

2 -like systems, and not on
neither field strength or nuclear mass. The R that corre-
sponds to a given combination of nuclear mass and field
strength gives the maximum of the spectrum through the
relation 1/R = U (R) = ER . The blue, green and purple
curves in show the maxima of the exact spectra, these spec-
tra are displayed in Fig. 8.10.

8.1.4 Simple Model for Spectrum Maximum
Figure 8.9 shows the f0 functions from Sec. 4.4.4. These can be used to
predict the maxima of the spectra. The maxima of the exact spectra are
indicated by the blue, green and purple curves in this figure. We see that
the WKB based f0 function is closer to the exact result than the one based
on a Gaussian approximation to the nuclear wave function. This is the
case because the values of R relevant are sufficiently large that the WKB
approximation is valid, but the Gaussian is no good.

Figure 8.10 shows the spectrum for different nuclear masses, as a func-
tion of field strength F . The magnitude of the spectra varies wildly with
field strength, so the spectra has been normalized with the total rate at
each F . The red lines on top of these spectra indicate the prediction from
Sec. 4.4.3 of the maximum of the spectra. They are seen to agree fairly
well for smaller field strengths, but less well for larger field strengths. This
makes sense, since this prediction is based on electronic WFAT and on
approximating electronic energies by their field-free values.
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the prediction from Sec. 4.4.3 for this, based on the f0(R)
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shows the total rate for each system on a logarithmic scale.
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8.2 Conclusion
We have formulated theory for the dissociative tunneling ionization pro-
cess, and derived exact formulas for the KER spectrum, as well as approxi-
mations in the framework of the BO and reflection approximations. We
have demonstrated that the reflection principle can be used in conjunc-
tion with the BO approximation to image the field-dressed nuclear wave
function from the KER spectrum. For weaker fields, where the BO approx-
imation fails, the WFAT can be used to find the KER spectrum. We have
also demonstrated a qualitative difference between asymptotic BO and
exact wave functions, as the latter shows classical motion in the nuclear
coordinate, whereas the former does not move at all due to the infinite
nuclear mass of the BO approximation. Around the turning line the wave
function exhibits a behavior similar to refraction of light at an interface
between different media.



9 Dissociation and Bound Ionic
States

In this chapter we consider U (R) potentials that allow for both bound and
continuum ionic states. We consider three different models using different
internuclear U (R) and electron-nuclear V (z,R) potentials. The various
models will be identified by the abbreviations M1, M2 and M3. In all of
these models some variation of the Morse potential

U (R) = D0
[
e−2α(R−R0) −2e−α(R−R0)] , (9.1)

with different parameters is used. The models are built such that they to a
varying degree imitate the behaviour of the 3D BO curves of H2 and H+

2 . In
building these models we have used the Morse potential approximations
to the true 3D BO curves, these are shown in Fig. 9.1, with parameters
given in the caption. The work described in this chapter is still in progress,
and it may therefore not appear as ’polished’ as other parts of the thesis.

9.1 H+
2 Morse and CTP Potentials (M1)

In the first model we use a Morse potential for U (R) with parameters
D0 = 0.1026, R0 = 2 and α= 0.72, which make this potential reproduce the
BO curve of H+

2 [see Fig. 9.1]. For the V (z;R) potential the CTP potential
[Eq. (7.3)] has been used.

Figure 9.2 shows the BO curves resulting from solving the electronic
problem Eq. (4.60a) for F = 0. On the U (R) potential curve the bound and
continuum states associated with this potential [the solutions of Eq. (4.7b)]
are shown. It is seen how the change of the nodal structure of the bound
state continues in the continuum. The nuclear wave function χ(R) is
multiplied by the asymptotic coefficient D(R) [Eq. (4.70b)] and projected
on the ionic states of the U (R) potential to give the BO approximation to

124
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Figure 9.1: The blue curves show the BO potentials of 3D
H+

2 [27] and H2 [28, 29]. The red curve show Morse poten-
tials with parameters D0 = 0.1026, R0 = 2, α= 0.72 for H+

2
and D0 = 0.1745, R0 = 1.4010, α= 1.2034 for H2.

the field-free asymptotic expansion coefficients [see Eqs. (4.31),(4.74)]

DBO
v =

∫ ∞

0
dR χ(R)D(R)gv (R), (9.2a)

DBO(k) =
∫ ∞

0
dR χ(R)D(R)g (R,k), (9.2b)

γBO
v =

∣∣DBO
v

∣∣2
(9.2c)

pBO(k) =
∣∣DBO(k)

∣∣2
. (9.2d)

In Fig. 9.3 these γBO
v , pBO(k) are compared to their exact counterparts

[Eq. (4.29)]

γv = |Dv |2 , (9.3)

p(k) = |D(k)|2 , (9.4)

and they are seen to agree quite well. For F = 0 the asymptotic coefficient
D(R) only has a weak (non-exponential) dependence on R. The Franck-
Condon principle [37] assumes that this coefficient in fact does not depend
on R , so we can evaluate the integrals Eqs. (9.2) by assuming D(R) = D(R0),
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Figure 9.2: BO curves for F = 0. The shaded (blue) region
near the bottom illustrates the nuclear wave function χ(R)
[Eq. (4.60b)]. The bound gv (R) and continuum g (R,k)
states that are solutions of Eq. (4.7b) are illustrated at their
energy ER in the U (R) curve. To the right the norm square
of the projection of the product D(R)χ(R) on the ionic
states gv (R), g (R,k) are illustrated [Eqs. (9.2)].

where R0 is the equilibrium distance of H2. We then obtain this asymptotic
coefficient times a Franck-Condon overlap and can write

γFC
v = |D(R0)|2

∣∣∣∣
∫ ∞

0
dR χ(R)gv (R)

∣∣∣∣
2

, (9.5a)

pFC(k) = |D(R0)|2
∣∣∣∣
∫ ∞

0
dR χ(R)g (R,k)

∣∣∣∣
2

. (9.5b)

These are also shown in Fig. 9.3, and they are seen to agree quite well with
the asymptotic coefficients.

Figure 9.4 shows the same as Fig. 9.2, only for a non-zero field strength
of F = 0.053. It is worth to note that the nuclear wave function χ(R), which
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solid (red) lines show the norm square of the asymptotic co-
efficients corresponding to bound and continuum states,
respectively [Eqs. (9.3)]. The medium shaded (blue) boxes
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same [Eq. (9.2)]. These results for H2 are the same as the
upper right part of Fig. 9.2. The dark shaded (green) boxes
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the same scale as the boxes. The dots on the energy axes
indicates the energies Ev of the bound states of the U (R)
potential.
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Figure 9.4: BO curves for F = 0.053 (a.u.). Similar to
Fig. 9.2. Note that the nuclear wave function χ(R) has
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1000 to make it visible on the same scale as the ionization
rates.

was calculated by diagonalizing the Hamiltonian of Eq. (4.60b) with com-
plex electronic energies Ee (R ;F ), has a non-zero imaginary part. Note also
that the spectrum is a lot smaller than the ionization rates to the bound
states, the difference is a lot larger than the corresponding difference in
the field-free case. In the framework of WFAT we can understand this ad-
ditional difference as originating from the field factor [Eqs. (4.58a)], since
states with a larger ER will have a larger κ, and therefore a smaller value of
this field factor.

Figure 9.5 shows the ionization rates and spectra for a small and a
larger field strength. As in Refs. [1, 2, 10] we see that the for the small field
strength the BO results are quite far from the exact, whereas WFAT gives a
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Figure 9.5: Ionization rates and spectra for two selected
field strengths with H2 as initial state. The lightly shaded
(red) boxes and solid (red) lines show ionization rates and
spectra respectively [Eqs. (4.27)]. The medium shaded
(blue) boxes and dashed (blue) lines show the BO approx-
imation for the same [Eqs. (4.69)]. These results for H2

are the same as the upper right part of Fig. 9.4. The dark
shaded (green) boxes and short dashed (green) lines show
the WFAT approximation for this [Eqs. (4.57)]. All lines
have been multiplied by a factor indicated in each panel
to make them visible on the same scale as the boxes. For
the larger field strength the WFAT spectrum is orders of
magnitude larger than the exact one.

better description, and the other way round for the larger field strength.
We also note that the continuum part is again a lot smaller than the bound
part.

This is also evident in Fig. 9.6. Here the exact total rate Γ(F ) is com-
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Figure 9.6: Ionization rates as function of field strength
for H2 (m1 = m2 = 1836). Solid (red) line: Exact rate
Γ(F ) = −2Im[E(F )]. Dashed (blue) line: Continuum rate
[Eq. (4.28c)]. Dotted (purple) line: BO rate ΓBO(F ) =
−2Im[EBO(F )]. Dashed-dot-dotted (orange) line: WFAT
rate [Eq. (4.59)]. In the lower panel the rates have been di-
vided by the WFAT field factor W0 [Eq. (4.58a)] of the v = 0
state to make the rates comparable on a linear scale. The
dashed-dotted (green) line shows the sum of partial rates
[Eq. (4.28a)].

pared to the continuum rate Γcont [Eq. (4.28c)], and the former is seen to
be at least 103 times larger than the latter. In this figure the breakdown of
the BO in the weak-field limit is also evident. The figure additionally shows
the sum of the sum of all the bound partial rates and integral of the contin-
uum spectrum [Eq. (4.28a)], labeled by ’Bound+Continuum’, compared to
the exact rate Γ(F ) =−2Im(E). These only agree in the weak-field limit as
indicated in Eq. (4.28a), for sufficiently large fields they differ and the total
rate is not the same as the sum of partial rates. The wave function for our
model looks almost the same as the wave function in Ref. [1] (or Chapter 7),
since in that work only bound ionic states were considered, and in our
case the bound ionic states dominate. In the asymptotic region we write
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the wave function as a sum of a bound and continuum part [Eq. (4.18)]. In
Fig. 9.7 we show the continuum contribution to this sum given by

Ψcont(z,R) =
∫ ∞

0
C (k) f (z,k)g (R,k)

dk

2π
, (9.6)

normalized by the electron density

ρ(z) =
∫ ∞

0
|Ψcont(z,R)|2 dR. (9.7)

This reconstruction can in principle be done on the basis of an experimen-
tally measured spectrum P (k), by using CExperiment =

p
P (k). The phase

information in C (k) would then not be known, but in the present case
using |C (k)| instead of C (k) yields identical plots. The structure of this
wave function might look a bit baffling at first. For a fixed z considered as
a function of R it has a number of oscillations and is not a collected wave
packet as in Ref. [2] (or Chapter 8). These oscillations can be understood
with the help of Fig. 9.4. Here we see that the spectrum P BO(k) has sig-
nificant weight over a fairly small range of energies, and the continuum
states g (R,k) with these energies only slightly change their nodal structure.
There is not sufficient energy spread of the spectrum to build a localized
wave packet. This means that the linear combination in Eq. (9.6) should
reflect this nodal structure, which is indeed what we see. Superimposed
on this nodal structure we also see a motion of the wave function towards
larger R as z becomes increasingly more negative. This motion shows
how the nuclei dissociate for the part of the wave function that is in the
dissociation continuum.

9.2 SCP Model (M2)
We have done the same calculations as in Sec. 9.1, using the same potential
for U (R), but using instead of the CTP potential a soft coulomb potential
of the form [Eq. (8.1b)]

V (z,R) =−
∑
±

1√(
z ± R

2

)2 +a(R)
, (9.8)

where a(R) has been chosen such that U (R)+Ee (R) reproduces the BO
curve of H2. The CTP potential was constructed such that it combined
with the potential Eq. (7.1) would reconstruct the minimum of the H2
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Figure 9.7: Reconstructed continuum wave function
|Ψcont(z,R)|2 /ρ(z), at F = 0.01. The inset on the right side
shows the square of the continuum state g (R,k)2 at the
energy where P (k) is maximal.

BO curve, using the method of App. E. However, when the CTP potential
is used together with the Morse potential Eq. (9.1) the minimum of the
resulting BO curve is shifted to smaller R [see Fig. 9.8], since the two U (R)
potentials are different around the equilibrium distance of H2 (but they
are similar around the equilibrium distance of H+

2 ). The model described
in this section, on the other hand, reproduces the H2 BO potential every-
where, and it is the model in this thesis that most closely resembles the H2

molecule.
Figs. (9.9), (9.10), (9.11), (9.12) and (9.13) show the results of calcula-

tions using this potential instead of the CTP. In all these figures we see that
the probabilities in the continuum spectrum is smaller compared to the
bound ionization states than was the case for M1. In M2 the minimum of
the U (R)+Ee (R,0) BO curve is closer to the minimum of the U (R) curve
than for M1 [see Fig. 9.8], as a consequence the overlap of the nuclear
wave function χ(R) (or the nuclear wave function times the electronic rate)
with the bound states of U (R) is larger for M2, and less weight goes to the
continuum states.

9.3 Another SCP (M3)
A third model we have considered is one where we use the Morse potential
Eq. (9.1) for U (R), but with parameters D0 = 0.1026, R0 = 2.5 and α =
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Figure 9.8: BO curves for the various models (M1,M2,M3)
used in this chapter. The upper curves are the U (R) poten-
tials. The lower curves show Ee (R,F = 0)+U (R) obtained
by solving the electronic BO problem [Eq. (4.60a)] using
the V (z,R) potential of the given model.

0.69. For the electron-nuclear potential V (z,R) we used the SCP Eq. (8.1b)
optimized such that the BO curve of H2 is reproduced.

Figs. (9.14), (9.15), (9.16), (9.17), (9.18) and (9.19) show the results of
calculations using this model. For this model we see that the continuum
states have more weight than in both M1 and M2. In M3 the minimum of
the BO curve U (R)+Ee (R,0) is further away from the minimum of U (R)
than for both M1 and M2 [see Fig. 9.8], and consequently the overlap
between the nuclear wave function (or the nuclear wave function times
the electronic rate) and the continuum states is larger for M3 than for
either M1 or M2.
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Figure 9.9: Same as Fig. 9.2, but using the potential Eq. (9.8)
instead of the CTP (M2).
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Figure 9.10: Same as Fig. 9.3, but using the potential
Eq. (9.8) instead of the CTP (M2).
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Figure 9.11: Same as Fig. 9.4, but using the potential
Eq. (9.8) instead of the CTP (M2).
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Figure 9.12: Same as Fig. 9.5, but using the potential
Eq. (9.8) instead of the CTP (M2).
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Figure 9.13: Same as Fig. 9.6, but using the potential
Eq. (9.8) instead of the CTP (M2).
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Figure 9.14: Same as Fig. 9.2, but using the potentials of
M3.
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Figure 9.15: Same as Fig. 9.3, but using the potentials of
M3.
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Figure 9.16: Same as Fig. 9.4, but using the potentials of
M3.
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Figure 9.17: Same as Fig. 9.5, but using the potentials of
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Figure 9.18: Same as Fig. 9.6, but using the potentials of
M3.
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Figure 9.19: Same as Fig. 9.7 at F = 0.08, but using the
potentials of M3.



A Asymptotic Expansion

In this appendix we will solve the differential equation

[
d 2

d x2
+ c4x + c3 +

c2

x
+ c1

x2

]
f (x) = 0 (A.1)

for large values of x by means of an asymptotic expansion. We will also
determine the integral

I (x) =
∫ ∞

x
f 2(x̃)d x̃, (A.2)

where f (x) is the solution to Eq. (A.1). This integral is needed for normal-
izing the wave function. The derivative of the f (x) are needed to calculate
the R-matrix, so these will also be presented. In this appendix we only con-
sider large positive x. By performing the substitutions x →−x, c2 →−c2

and c4 →−c4 in Eq. (A.1) the results for large negative x can be obtained
by the same expansions, since Eq. (A.1) is unchanged under this set of
substitutions. The asymptotic expansions for the cases c4 = 0 and c4 6= 0
are rather different, so we will consider these two cases separately. This
appendix is similar to Appendix A of Ref. [1].

A.1 The c4 = 0 Case
We start by making the ansatz

f (x) = xαe Ax g (x). (A.3)

Inserting this ansatz in Eq. (A.1) we obtain

d 2g (x)

d x2
+2

(
A+ α

x

) d g (x)

d x
+

(
A2 + c3 +

2αA+ c2

x
+ α(α−1)+ c1

x2

)
g (x) = 0

(A.4)
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If we choose the ansatz coefficients and define the new coefficient B

A2 =−c3, (A.5a)

α= −c2

2A
, (A.5b)

B ≡α(α−1)+ c1 (A.5c)

we can write Eq. (A.4)

0 =
[

d 2

d x2
+2

(
A+ α

x

) d

d x
+ B

x2

]
g (x). (A.6)

We now assume that g (x) is of the form

g (x) =
∞∑

n=0

gn

xn
. (A.7)

Inserting this in Eq. (A.6) yields the recursive relation

gn =− (n −1)(n −2α)+B

2n A
gn−1. (A.8)

This concludes the construction of the asymptotic expansion. The deriva-
tive can be written

d

d x
f (x) = xαe Ax

[(α
x
+ A

) ∞∑
n=0

gn

xn
−

∞∑
n=1

ngn

xn+1

]
. (A.9)

Note that nothing fixes the coefficient g0. The freedom in choosing this
coefficient corresponds to multiplying a constant on the full solution f (x),
as can be seen by the form of the recursion Eq. (A.8).

We now find an expansion for the integral Eq. (A.2). First we write

f 2(x) = x2αe2Ax
∞∑

k=0

Gk

xk
, (A.10a)

Gk =
k∑

m=0
gk−m gm . (A.10b)

Suppose now that the integral Eq. (A.2) is of the form

I (x) =−x2αe2Ax
∞∑

k=0

hk

xk
. (A.11)
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From Eq. (A.2) we get that I ′(x) =− f 2(x), so to check if the above expan-
sion in fact correctly describes I (x) let us calculate the derivative

I ′(x) =−x2αe2Ax

[
2Ah0

x0
+

∞∑

k=1

[2α− (k −1)]hk−1 +2Ahk

xk

]
. (A.12)

This is indeed of the same form as Eq. (A.10a). We can match the Gk

coefficients to this expression and thereby obtain the recursion

h0 =
G0

2A
, (A.13a)

hk = Gk − [2α− (k −1)]hk−1

2A
k = 1,2, . . . . (A.13b)

A.2 The c4 6= 0 Case
In this case we start by introducing a new variable

z2 = x. (A.14)

In terms of this variable Eq. (A.1) becomes

[
d 2

d z2
− 1

z

d

d z
+4c4z4 +4c3z2 +4c2 +4

c1

z2

]
f (z) = 0. (A.15)

We now make the ansatz

f (z) = z−1/2 exp

(
1

6
Dz3 + 1

2
B z

)
g (z). (A.16)

Inserting this in Eq. (A.15) yields
[

d

d z2
+

(
−2

z
+Dz2 +B

)
d

d z
+ A− B

z
+ C

z2

]
g (z) = 0, (A.17)

where the following coefficients have been chosen or introduced

D2 =−42c4, (A.18a)

B = −8c3

D
, (A.18b)

A = 1

4
B 2 +4c2, (A.18c)

C = 4c1 +
5

4
. (A.18d)
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Inserting the expansion

g (z) =
∞∑

n=0

gn

xn
(A.19)

in Eq. (A.17) yields

0 =
∞∑

n=3

((n −3)n +C )

zn−1
gn−3 −

∞∑
n=2

B(n −1)

zn−1
gn−2 +

∞∑
n=1

A

zn−1
gn−1 −

∞∑
n=0

nD

zn−1
gn

(A.20)

From this we obtain the recursion

g1 = g0
A

D
, (A.21a)

g2 =
Ag1 −B g0

2D
, (A.21b)

gn = [n(n −3)+C ]gn−3 − (n −1)B gn−2 + Agn−1

nD
n = 3,4, . . . . (A.21c)

The derivative of this solution is

d f (z)

d z
= z−1/2 exp

(
1

6
Dz3 + B

2
z

)([
− 1

2z
+ D

2
z2 + B

2

] ∞∑
n=0

gn

zn
−

∞∑
n=1

ngn

zn+1

)
,

(A.22a)

d f (x)

d x
= z−3/2

2
exp

(
1

6
Dz3 + B

2
z

)([
− 1

2z
+ D

2
z2 + B

2

] ∞∑
n=0

gn

zn
−

∞∑
n=1

ngn

zn+1

)
.

(A.22b)

In order to calculate the I (x) integral Eq. (A.2) we first make a change of
variable

I (x) =
∫ ∞

x
f 2(x̃)d x̃ =

∫ ∞

z
f 2(x(z))2zd z. (A.23)

The integrand is of the form

f 2(x(z))2z = 2exp

(
1

3
Dz3 +B z

) ∞∑

k=0

Gk

zk
, (A.24a)

Gk =
k∑

m=0
gk−m gm . (A.24b)
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We proceed similarly as in the c4 = 0 case and assume the integral to be of
the form

I (z) = exp

(
1

3
Dz3 +B z

) ∞∑

k=0

hk

zk
. (A.25)

The derivative of this is given by

d

d z
I (z) = exp

(
1

3
Dz3 +B z

)(
2∑

k=0

Dhk

zk−2
+ Bh0

z0
+

∞∑

k=1

Dhk+2 +Bhk − (k −1)hk−1

zk

)
.

(A.26)

This is indeed of the same form as Eq. (A.24a), and by matching the coeffi-
cients we obtain

h0 = h1 = 0, (A.27a)

h2 =
1

D
2G0, (A.27b)

hk = 1

D
(2Gk−2 −Bhk−2 + (k −3)hk−3) k = 3,4, . . . . (A.27c)



B WKB Approximation

In this appendix the Wentzel-Kramers-Brillouin (WKB) theory will be de-
rived. The structure of this appendix is inspired by Landau and Lifshitz’
book [14]. The basic idea of the WKB approximation is to expand solu-
tions to the time-independent Schrödinger equation (TISE) in orders of
the Planck constant ~. The Planck constant is in some sense a measure
of how ’classical’ a system is, when this constant is small compared to
other characteristics of the system a system behaves in a classical manner.
WKB theory is also sometimes referred to as semi-classical theory. In this
appendix we do not put ~ to 1, unlike the rest of the thesis.

We start by writing the TISE in the form
[
~2 d 2

d x2
+p2(x)

]
ψ(x) = 0. (B.1)

Into this we insert the ansatz

ψ(x) =Ce i f (x)/~, (B.2)

which yields [for ψ(x) 6= 0]

0 =−( f ′(x))2 + i~ f ′′(x)+p2(x). (B.3)

We now expand f in powers of ~

f (x) = f0(x)+~ f1(x)+~2 f2(x)+ . . . (B.4)

This expansion is inserted in Eq. (B.3). Collecting terms to zeroth order in
~ we get

f0(x) =±
∫

d x p(x). (B.5)

f0(x) is a fair approximation to f (x) if the second term in equation (B.3) is
a lot smaller than the first one

1 À
∣∣∣∣
~ f ′′

( f ′)2

∣∣∣∣=
∣∣∣∣

d

d x

( ~
f ′

)∣∣∣∣=
∣∣∣∣

d

d x

(~
p

)∣∣∣∣ . (B.6)
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If we continue the derivation and collect to first order we get

0 =−2 f ′
0(x) f ′

1(x)+ i f ′′
0 (x) (B.7)

f1(x) = i
1

2
ln p(x) (B.8)

The wave function to first order in ~= 1 then becomes:

ψ(x) =Ce i ( f0(x)+ f1(x)) (B.9)

= C

p1/2(x)
e±i

∫
d x p(x) (B.10)

The integration in the exponential carries an arbitrary constant. Different
choices of this constant can be absorbed into to the constant C . Often
one choices the integration to start at a classical turning point defined by
p(xt ) = 0, thereby fixing the value of C

ψ(x) = C

p1/2(x)
e±i

∫ x
xt

d x ′ p(x ′). (B.11)



C Reflection Approximation

In this appendix we will derive the reflection approximation. The reflection
approximation provides a convenient way of evaluating integrals of the
form

C (k) =
∫ ∞

0
dR ϕ(R)g (R,k), (C.1)

where ϕ(R) is some function and g (R,k) are continuum state solutions of
the eigenvalue problem

[
− 1

2M

d 2

dR2
+U (R)−ER

]
g (R,k) = 0, (C.2)

where it is assumed that U (R)|R→∞ = 0, ER > 0 and the energy is parametrized

by the wave number ER = k2

2M . The continuum states are normalized ac-
cording to

g (R,k)|R→∞ = 2sin(kR +δ), (C.3)

and we impose the boundary condition g (R = 0,k) = 0. We assume that
the potential U (R) for a given k has exactly one turning point Rt

U (Rt ) = ER = k2

2M
. (C.4)

We expand the potential U (R) to first order around this turning point

U (R) ≈U (Rt )+U ′(Rt )∆R, (C.5)

where ∆R = R −Rt .
We define the variable

z =−α∆R, (C.6)
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Figure C.1: Airy function in a Coulomb potential U (R) =
1/R, based on a linear expansion of the potential around
Rt = 2.4. Also shown is the corresponding Coulomb wave.
They agree well around the turning point Rt .

where

α= (−2MU ′(Rt )
)1/3 . (C.7)

The eigenvalue problem (C.2) can be written in terms of the z variable
as

[
d 2

d z2
− z

]
g (R,k) = 0. (C.8)

This is the Airy equation, the solution of which is the Airy function1 [22]

g (R) = A Ai(z), (C.9)

where A is a normalization constant. In the following we will determine
this normalization constant by relating it to the normalization condition
(C.3). The problem is that the Airy solution is only valid near the turning
point, and not at R →∞ where the normalization condition applies. To

1The second order differential equation (C.2) of course have two linearly independent
solutions. We choose to consider the regular solution, which is the Airy function. Since
Ai(∞) = 0 we should in principle consider the limit R →−∞ instead of R = 0, but the
numerical difference between these is small.
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connect these conditions we will use WKB theory [see App. B]. The WKB
wave function is of the form

g (R) = C1

p1/2(R)
e i

∫ R
Rt

dR ′ p(R ′) + C2

p1/2(R)
e−i

∫ R
Rt

dR ′ p(R ′) (C.10)

where the classical momentum given by

p(R) =
√

2M (ER −U (R)). (C.11)

We consider the regular solution g (R = 0) = 0, and for this it can be shown
[14, §47] that in the classically allowed region

g (R) = C

p1/2(R)
cos

(∣∣∣∣
∫ R

Rt

dR ′ p(R ′)
∣∣∣∣−

π

4

)
. (C.12)

This we want to match with the asymptotic normalization condition (C.3).
The phase of the WKB approximation (C.12) is not going to match that
of the exact solution, so will not care about this, only the constant in
front of the trigonometric function will concern us here. We have that
p(R)|R→∞ = k, so matching the normalization condition with the WKB
wave function yields

C = 2
p

k. (C.13)

Now we wish to match the WKB wave function (C.12) to the Airy func-
tion (C.9). The problem is that the Airy function is only accurate near the
turning point, but here the WKB wave function is not valid. We will there-
fore do the matching in a region close to, but still far away from the turning
point. First we expand the classical momentum around the turning point
(remember that ∆R = R −Rt )

pR =
p
∆R

p
2M

√
ER −∑∞

n=0
1
n!U

(n)(Rt )∆Rn

∆R
(C.14a)

=
p
∆R

p
2M

(√
−U ′(Rt )+O(∆R)

)
(C.14b)

=α3/2
p
∆R +O(∆R3/2) (C.14c)

∫ R

Rt

dR pR = 2

3
(α∆R)3/2 +O(∆R5/2). (C.14d)

The WKB wave function (C.12) can then be written near the turning point

g (R) = 2
p

k

(α3∆R)1/4
cos

(∣∣∣∣
2

3
(α∆R)3/2

∣∣∣∣−
π

4

)
. (C.15)
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We will match this to the asymptotic of the Airy function (C.9) for large
arguments [22]

g (R)|R→∞ = A
cos

(2
3α

3/2 (∆R)3/2 − 1
4π

)
p
π(α∆R)1/4

. (C.16)

Matching these yields

A = 2

√
kπ

α
. (C.17)

Figure C.1 shows an Airy function with this normalization in a Coulomb
potential compared to the Coulomb wave that is the exact solution of
Eq. (C.2) for that potential.

Delta Limit

From Ref. [38] we have the following representation of the delta function
in terms of Airy functions

δ(x) = lim
ε→0

1

ε
Ai

(x

ε

)
. (C.18)

We can write the solution (C.9) as

g (R) = 2

√
kπ

α3

1

α−1
Ai

(
− ∆R

α−1

)
. (C.19)

In the limit M →∞ we have α−1 → 0, and thus obtain

g (R) = 2

√
kπ

α3
δ(∆R). (C.20)

If we note that
dR

dk
= k

MU ′(Rt )
, (C.21)

this can be written as

g (R) =
√
−2π

dR

dk
δ(R −Rt ). (C.22)

Using this approximation for g (R) the integral (C.1) can be approxi-
mately evaluated

C̃ (k) =
√
−2π

dRt

dk
ϕ(Rt ). (C.23)
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Figure C.2: An example function ϕ(R) = e3·(R−1.8)2 −
e6·(R−2.2)2

. Solid (red) line: Direct numerical projection of
ϕ(R) on Coulomb waves with M = 1836/2. Dashed dotted
(blue) line: Approximation to this based on Eq. (C.23).



D Continuum Normalization

In this Appendix we will show that the asymptotic normalization condition

g (R,k)|R→∞ = 2sin(kR +δk ) (D.1)

is equivalent with the delta normalization condition
∫ ∞

0
g (R,k)g (R,k ′) = 2πδ(k −k ′), (D.2)

where g (R,k) is a continuum state solution of the eigenvalue problem
(
− 1

2M

d 2

dR2
+U (R)

)
g (R,k) = E g (R,k), (D.3)

with E = k2

2M and the boundary condition g (R = 0,k) = 0. It is assumed that
U (R)|R→∞ = 0. The derivation in this appendix was inspired by a note by
Haruhide Miyagi.

We start by considering two solutions gk and gk ′ to Eq. (D.3) with
energies E and E ′. Equation (D.3) for each of these states is multiplied
with the other state, then these are subtracted from each other to obtain

− 1

2M

(
gk ′

d 2

dR2
gk − gk

d 2

dR2
gk ′

)
= (E −E ′)gk gk ′ , (D.4)

where we introduced the short-hand notation gk = g (R,k). Now integrat-
ing this over R yields

(E −E ′)
∫ ∞

0
gk gk ′dR = 1

2M
lim

R→∞

(
gk

d

dR
gk ′ − gk ′

d

dR
gk

)
. (D.5)

Inserting the asymptotic normalization condition (D.1) and applying trigono-
metric addition rules yields
∫ ∞

0
gk gk ′dR = 1

k2 −k ′2 lim
R→∞

(
gk

d

dR
gk ′ − gk ′

d

dR
gk

)
(D.6)

= 2 lim
R→∞

[
sin

(
(k −k ′)R +δk −δk ′

)

k −k ′ − sin
(
(k +k ′)R +δk +δk ′

)

k +k ′

]
.

(D.7)
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By using the representation of the delta function as the limit of a sine
function

δ(x) = lim
a→∞

sin ax

πx
(D.8)

we obtain that
∫ ∞

0
gk gk ′dR = 2πδ(k −k ′), (D.9)

which establishes the equivalence of Eqs. (D.1) and (D.2).



E Soft-coulomb Potential

We have used soft-coulomb potentials of the form [34–36]

V (z,R) =−
∑
±

1√(
z ± R

2

)2 +a(R)
, (E.1)

where the parameter a(R) has been chosen such that U (R) and U (R)+
Ee (R) coincides with a given set of BO curves, where the electronic energy
is found by solving the problem

[H −Ee (R)]ψe (z;R) = 0, (E.2)

where

H =−1

2

d 2

d z2
+V (z,R). (E.3)

Given two sets of BO curves U (R) and Ul (R), this could, e.g., be the BO
curves of H2 and H+

2 , we thus want to find values of a(R) such that Ee (R) is
the same as the difference of the BO potentials

Etarget(R) =Ul (R)−U (R). (E.4)

In the following we consider a given value of R , and will therefore drop
it in all notation. We can consider the electronic energy of the ground state
as a function of the softening parameter E 0

e (a). Consider the function

f (a) = Etarget −E 0
e (a). (E.5)

We wish to find a zero for this function. For this we can use the Newton-
Raphson method, where the following sequence is evaluated until conver-
gence

an+1 = an − f (an)

f ′(an)
. (E.6)
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The function f (an) can be evaluated by diagonalizing the Hamiltonian
of Eq. (E.2). The derivative f ′(an) is slightly more tricky. We could use
a numerical derivative, as discussed right after Eq. (6.105), but there is
another way to determine this derivative. Consider Eq. (E.2) derived with
respect to a

[H(a)−Ee (a)]
∂

∂a
ψe (z, a)+

[
∂

∂a
H(a)−E ′

e (a)

]
ψe (z, a) = 0. (E.7)

By projecting this with
∫ ∞
−∞ d z ψe (z, a) and using the hermicity of H (a) we

obtain
∫
ψe (z, a)

[
∂

∂a
V (z, a)−E ′

e (a)

]
ψe (z, a) d z = 0, (E.8)

which assuming the normalization
∫
ψ2

e (z, a) d z = 1 can be written

E ′
e (a) =

∫
ψ2

e (z, a)
∂

∂a
V (z, a) d z. (E.9)

Note that this is a version of the Hellman-Feynman theorem. We can thus
calculate the Newton-Raphson steps by finding the smallest eigenvalue of
H(an) and the corresponding eigenvector and using Eq. (E.9).

Since the potential V (z,R) should be smooth in R , the same should be
the case for softening parameter a(R). It can therefore be a good idea to
use the a(R) obtained at one value of R as initial guess for a(R) at the next
R considered.
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