Time-dependent Schrödinger equation
\begin{align}
i\frac{\partial }{\partial t} \Psi(x,R,t) & = [H_0+F(t) x] \Psi(x,R,t)
\end{align}
\begin{align}
H_0 = -\frac{1}{2m}\frac{\partial^2}{\partial x^2}-\frac{1}{2\mu} \frac{\partial^2}{\partial R^2} + V(x;R)+U_\text{ion}(R)
\end{align}
AAnf
Assuming \(\ T_\text{electron} \ll T_\text{field}, T_\text{nuclei}\)
Born-Oppenheimer ansatz
\begin{align*}
\Psi_{\text{BO}}(x,R,t) = \Psi(R, t)\psi_e(x;R,F(t))
\end{align*}
Electronic Siegert state
\begin{align*}
\small{\left[-\frac{1}{2}\frac{\partial^2}{\partial x^2} + V(x;R) + F x - E_e(R,F)\right] \psi_e(x;R,F) = 0}
\end{align*}
Siegert states (tunneling)
AAnf
Assuming \(\ T_\text{electron} \ll T_\text{field}, T_\text{nuclei}\)
Born-Oppenheimer ansatz
\begin{align*}
\Psi_{\text{BO}}(x,R,t) = \Psi(R, t)\psi_e(x;R,F(t))
\end{align*}
Electronic Siegert state
\begin{align*}
\small{\left[-\frac{1}{2}\frac{\partial^2}{\partial x^2} + V(x;R) + F x - E_e(R,F)\right] \psi_e(x;R,F) = 0}
\end{align*}
Nuclear wavefunction fulfills
\begin{align*}
i\frac{\partial}{\partial t}\Psi(R, t)
& = \left[-\frac{1}{2\mu} \frac{\partial^2}{\partial R^2}
+ E_e(R,F(t))\right] \Psi(R, t)
\end{align*}
Photo-electron momentum distribution (PEMD)
\begin{align*}
P_v^{\text{AAnf}}(k) & = 2\pi \left|\sum_i \frac{e^{i\mathcal{S}_a(t_i,v; k)} g_v(t_i)}{\sqrt{|F(t_i)|}} \right|^2
\end{align*}
\begin{align*}
g_v(t) = \int_0^\infty \chi_v (R) f(R,F(t)) \Psi(R,t) dR,\\
\psi_e(x;R,F)|_{|x|\to \infty} = f(R,F) f(x,E_e(R,F),F)
\end{align*}
Mapping time to momentum
Convergence of PEMD