Adiabatic theory of strong-field ionization of molecules including nuclear motion

Jens Svensmark

January 21, 2020

My background

Aarhus University

PhD

Kansas state university

Postdoc

University of Electro-communications (Tokyo)

Postdoc

Intro

Adiabatic theory

  • Previously been used for atoms
  • Here we look at molecules

Time scales

  • Laser
  • Motion inside molecule
  • Ratio is adiabatic parameter

Adiabatic approximation

  • Adiabatic parameter small
  • Laser field momentarily constant
  • Sequence of stationary Siegert states

Sequence of stationary states

Sorry, your browser does not support SVG.

Sequence of stationary states

Sorry, your browser does not support SVG.

Sequence of stationary states

Sorry, your browser does not support SVG.

Sequence of stationary states

Sorry, your browser does not support SVG.

Previous work

  • Looked at atoms/fixed nuclei
  • Electrons are fast
  • Laser is slow
  • How about nuclei?

PRA 86, 043417 (2012)

PRA 92, 043402 (2015)

PRL 116, 173001 (2016)

What we want to do

Extend adiabatic theory to molecules including nuclear motion

Numerical calculations

1D model

Sorry, your browser does not support SVG.

Time-dependent Schrödinger equation

\begin{align} i\frac{\partial }{\partial t} \Psi(x,R,t) & = [H_0+F(t) x] \Psi(x,R,t) \end{align}
\begin{align} H_0 = -\frac{1}{2m}\frac{\partial^2}{\partial x^2}-\frac{1}{2\mu} \frac{\partial^2}{\partial R^2} + V(x;R)+U_\text{ion}(R) \end{align}

Numerical methods

Split step fourier method

Scattering states found using R-matrix propagation

Fixed nuclei example

Adiabatic theory (fixed nuclei)

\(\epsilon = \frac{T_\text{e}}{T_\text{f}} \to 0\)

Photo electron momentum distribution (PEMD)

\begin{align} P(k) & = \frac{2\pi}{\left| F(t_i) \right|} \left| f(F(t_i)) \right|^2 e^{- \int_{-\infty}^{t_i} \Gamma(F(t)) dt} \end{align}

\(k:\) Momentum of outgoing electron

\(t_i\) is time at which electron with momentum \(k\) ionized, \(k = -\int_{t_i}^{\infty} F(t')dt'\)

Pulse

Adiabatic theory (fixed nuclei)

\(\epsilon = \frac{T_\text{e}}{T_\text{f}} \to 0\)

Photo electron momentum distribution (PEMD)

\begin{align} P(k) & = \frac{2\pi}{\left| F(t_i) \right|} \left| f(F(t_i)) \right|^2 e^{- \int_{-\infty}^{t_i} \Gamma(F(t)) dt} \end{align}

\(k:\) Momentum of outgoing electron

\(t_i\) is time at which electron with momentum \(k\) ionized, \(k = -\int_{t_i}^{\infty} F(t')dt'\)

\(f(F), \Gamma(F):\) Properties of Siegert state

Siegert state

Solution of time independent Schrödinger equation

\begin{align} [H_0 + Fx] \Phi(x, R; F) & = E(F) \Phi(x, R; F) \end{align}

with outgoing-wave boundary conditions.

Outgoing wave

Sorry, your browser does not support SVG.

Outgoing wave

Sorry, your browser does not support SVG.

Outgoing wave

Sorry, your browser does not support SVG.

Adiabatic theory (fixed nuclei)

Photo electron momentum distribution (PEMD)

\begin{align} P(k) & = \frac{2\pi}{\left| F(t_i) \right|} \left| f(F(t_i)) \right|^2 e^{- \int_{-\infty}^{t_i} \Gamma(F(t)) dt} \end{align}

\(k:\) Momentum of outgoing electron

\(t_i\) is time at which electron with momentum \(k\) ionized, \(k = -\int_{t_i}^{\infty} F(t')dt'\)

\(f(F):\) Asymptotic wave function coefficient

\(\Gamma(F):\) Total rate

Weak field limit

For \(F\to 0\) adiabatic theory reduces to Keldysh theory

Nuclear-electron interaction

\begin{align} V(x; R) = V\left(x+\frac{1}{2}R\right) + V\left(x-\frac{1}{2}R\right) \end{align}

Finite range potential

\begin{align} V(x)&=-\frac{a}{\cosh^2(bx)}, \end{align}

with \(a = 0.62772\) and \(b = 0.857\).

Gaussian half-cycle pulse

\begin{align} F(t) & = F_0\exp\left(-\left[\frac{2t}{T}\right]^2\right) \end{align}

TDSE solution

Convergence to adiabatic theory

Sorry, your browser does not support SVG.

Convergence to adiabatic theory

Sorry, your browser does not support SVG.

Convergence to adiabatic theory

Sorry, your browser does not support SVG.

Including nuclear motion

Nuclear-nuclear interaction

H\(_2^+\) like interaction

\begin{align} U_\text{ion}(R) & = \frac{A}{R^2} + B + C R^2 \end{align}

with \(A=0.26, B =-0.732635\) and \(C =0.01625\)

\(R\) is the internuclear seperation

Vibrational states, molecular ion

Sorry, your browser does not support SVG.

\begin{align*} \left[-\frac{1}{2\mu} \frac{d^2}{dR^2} + U_\text{ion}(R)\right] \chi_v(R) = \varepsilon_v \chi_v(R) \end{align*}

Adiabatic theory

\(\epsilon_\text{f} = \max\left(\frac{T_\text{e}}{T_\text{f}}, \frac{T_\text{n}}{T_\text{f}}\right) \to 0\)

PEMD (for half-cycle pulse)

\begin{align*} P_v(k) & = \frac{2\pi}{m^2} \frac{|f_{v}(F(t_i))|^2}{ |F(t_i)|} e^{-\int_{-\infty}^{t_i} \Gamma(F(t')) dt'} \end{align*}

Total PEMD

\begin{align*} P(k) = \sum_v P_v(k) \end{align*}

Siegert state (real part)

PEMD

Sorry, your browser does not support SVG.

PEMD

Sorry, your browser does not support SVG.

PEMD

Sorry, your browser does not support SVG.

Slow nuclei and field (AAnf)

AAnf

\(\epsilon_\text{nf} = \max\left(\frac{T_\text{e}}{T_\text{f}}, \frac{T_\text{e}}{T_\text{n}}\right) \to 0\)

Born-Oppenheimer ansatz

\begin{align*} \Psi_{\text{BO}}(x,R,t) = \Psi(R, t)\psi_e(x;R,F(t)) \end{align*}

Electronic Siegert state \(\psi_e(x;R,F(t))\)

\begin{align*} \left[H_x(F) - E_e(R,F)\right] \psi_e(x;R,F) = 0 \end{align*}

where

\(H_x(F) = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + Fx + V\left(x; R\right)\)

AAnf

Born-Oppenheimer ansatz

\begin{align*} \Psi_{\text{BO}}(x,R,t) = \Psi(R, t)\psi_e(x;R,F(t)) \end{align*}

Nuclear wavefunction fulfills

\begin{align*} i\frac{\partial}{\partial t}\Psi(R, t) & = \left[-\frac{1}{2\mu} \frac{\partial^2}{\partial R^2} + E_e(R,F(t))\right] \Psi(R, t) \end{align*}

Nuclear time evolution

PEMD

\begin{align*} P_v^{\text{AAnf}}(k) & = \frac{2\pi }{|F(t_i)|} \left| g_v(t_i) \right|^2 \\ \end{align*}
\begin{align*} g_v(t) = \int_0^\infty \chi_v (R) f(R,F(t)) \Psi(R,t) dR, \end{align*}
\begin{align*} \psi_e(x;R,F)|_{|x|\to \infty} = f(R,F) f(x,E_e(R,F),F) \end{align*}

Build the PEMD

PEMD

Sorry, your browser does not support SVG.

PEMD

Sorry, your browser does not support SVG.

PEMD

Sorry, your browser does not support SVG.

Regions of applicability

AAf

\begin{align*} \epsilon_\text{f} = \max\left(\frac{T_\text{e}}{T_\text{f}}, \frac{T_\text{n}}{T_\text{f}}\right) \to 0 \end{align*}

AAnf

\begin{align*} \epsilon_\text{nf} = \max\left(\frac{T_\text{e}}{T_\text{f}}, \frac{T_\text{e}}{T_\text{n}}\right) \to 0 \end{align*}

Regions of applicability

Sorry, your browser does not support SVG.

Compatibility

Sorry, your browser does not support SVG.

Compatibility

Sorry, your browser does not support SVG.

Compatibility

Sorry, your browser does not support SVG.

Small nuclear masses

\(T=30\) a.u.

Sorry, your browser does not support SVG.

Small nuclear masses

\(T=150\) a.u.

Sorry, your browser does not support SVG.

Few-cycle pulse

Pulse

\begin{align*} P_v^{\text{AAnf}}(k) & = \left|\sum_i \frac{\sqrt{2\pi} e^{i\pi/4} }{\sqrt{s_i F(t_i)}} e^{i\mathcal{S}_a(t_i,v; k)} g_v(t_i) \right|^2 \end{align*}

Build the PEMD

PEMD

Sorry, your browser does not support SVG.

PEMD

Sorry, your browser does not support SVG.

Closer look at the nuclear wave function

Nuclear time evolution

Classical trajectory

Sorry, your browser does not support SVG.

Classical trajectory

Sorry, your browser does not support SVG.

Many-cycle pulse

How much time does TDSE take?

How much time does TDSE take?

PEMD

Sorry, your browser does not support SVG.

PEMD

nit_picked_just_map.png

PEMD

nit_picked_map_only_res.png

Many-cycle model

\begin{align} F(t) = F_0 \cos \omega t \end{align}
\begin{align} P_{v}^{\text{AAnf}}(k) \propto % 2\pi \frac{\left|\tilde{g}_{v}(t_{(0, 1)})\right|^2}{\left|F(t_{(0, 1)})\right|} \left|p^{\text{inter}}(k)\right|^2 \left|p^{\text{intra}}(k)\right|^2 \end{align}

Similar to SFA based model in PRA 93, 031401

Inter-cycle factor

\begin{align} \left|p^{\text{inter}}(k)\right|^2 = e^{-c(k)} \left|\frac{\sin^2 [N d(k)]}{\sin^2 d(k)}\right| \end{align}
\begin{align} d(k) & = \pi \omega^{-1} \Delta E(k) \color{gray} { + \frac{1}{2}s_0^{\text{cycle}}}\\ \Delta E(k) & = E_0^{\text{BO}}-\varepsilon_v - \frac{1}{2 m} k^2 - U_p \end{align}

Ponderomotive energy: \(U_p = \frac{F_0^2}{4m\omega^2}\)

PEMD

nit_picked_map_only_res.png

Intra-cycle factor

\begin{align} p^{\text{intra}}(k) = 2 \cos \frac{\Delta\mathcal{S}_a(k)}{2} \end{align}
\begin{align} \Delta \mathcal{S}_a(k) = & - \omega^{-1} \Delta E(k) \left[-2\sin^{-1} \frac{k\omega}{F_0}+\text{sgn}(k) \pi\right] \\ & - \frac{3}{2}k \frac{F_0}{m\omega^2} \sqrt{1 - \left(\frac{k\omega}{F_0}\right)^2}- \Delta s_0 \end{align}

PEMD

nit_picked_map_only_res.png

PEMD

nit_picked_map.png

Recap

  • Goal: Extend adiabatic theory
  • AAf only works for small nuclear masses in slow fields
  • AAnf works for large nuclear masses in slow fields
  • Possible next: include rescattering
  • Possible next: include dissociation

Deleted scenes

Introduction

Breakdown of BOA

Sorry, your browser does not support SVG.

What we want to look at

  • BOA breaks down in weak-field limit for total rate
  • WFAT gives total rate
  • Adiabatic theory gives differential quantities
  • Differential quantities might show other BO-breakdowns

Numerical calculations

Time-independent Schrödinger equation

Scattering boundary conditions

\begin{align} H_0 \Psi(x,R) & = E \Psi(x,R) \end{align}

Boundary conditions

\begin{align} \Psi_-^{\text{out}}(x,k) & = \begin{cases} e^{-ikx} - r^* e^{ikx} & x\leq x_-\\ t^* e^{-ikx} & x\geq x_+ \end{cases} \end{align}

Sorry, your browser does not support SVG.

\(\Psi_+^{\text{out}}(x,k)\)

Sorry, your browser does not support SVG.

Scattering solution method

  • R-matrix propagation in \(x\)
  • Adiabatic basis in \(R\) for fixed \(x\)
  • Sectorized legendre DVR in \(x\)
  • Sine-DVR in \(R\)

Different grids

Sorry, your browser does not support SVG.

One cycle pulse

Pulse

\begin{align*} P_v^{\text{AAnf}}(k) & = \left|\sum_i \frac{\sqrt{2\pi} e^{i\pi/4} }{\sqrt{s_i qF(t_i)}} e^{i\mathcal{S}_a(t_i,v; k)} R_v(t_i) \right|^2 \end{align*}

Build the PEMD

\begin{align*} P_v^{\text{AAnf}}(k) & = \left|\sum_i \frac{\sqrt{2\pi} e^{i\pi/4} }{\sqrt{s_i F(t_i)}} e^{i\mathcal{S}_a(t_i,v; k)} R_v(t_i) \right|^2 \end{align*}

Full wavefunction evolution

PEMD

Sorry, your browser does not support SVG.

PEMD

Sorry, your browser does not support SVG.

PEMD

Sorry, your browser does not support SVG.

PEMD

Sorry, your browser does not support SVG.

PEMD zoom