Adiabatic theory (fixed nuclei)
\(\epsilon = \frac{T_\text{e}}{T_\text{f}} \to 0\)
Photo electron momentum distribution (PEMD)
\begin{align}
P(k)
& = \frac{2\pi}{\left| F(t_i) \right|} \left| f(F(t_i)) \right|^2 e^{- \int_{-\infty}^{t_i} \Gamma(F(t)) dt}
\end{align}
\(k:\) Momentum of outgoing electron
\(t_i\) is time at which electron with momentum \(k\) ionized,
\(k = -\int_{t_i}^{\infty} F(t')dt'\)
Pulse
Adiabatic theory (fixed nuclei)
\(\epsilon = \frac{T_\text{e}}{T_\text{f}} \to 0\)
Photo electron momentum distribution (PEMD)
\begin{align}
P(k)
& = \frac{2\pi}{\left| F(t_i) \right|} \left| f(F(t_i)) \right|^2 e^{- \int_{-\infty}^{t_i} \Gamma(F(t)) dt}
\end{align}
\(k:\) Momentum of outgoing electron
\(t_i\) is time at which electron with momentum \(k\) ionized,
\(k = -\int_{t_i}^{\infty} F(t')dt'\)
\(f(F), \Gamma(F):\) Properties of Siegert state
Siegert state
Solution of time independent Schrödinger equation
\begin{align}
[H_0 + Fx] \Phi(x, R; F) & = E(F) \Phi(x, R; F)
\end{align}
with outgoing-wave boundary conditions.
Adiabatic theory (fixed nuclei)
Photo electron momentum distribution (PEMD)
\begin{align}
P(k)
& = \frac{2\pi}{\left| F(t_i) \right|} \left| f(F(t_i)) \right|^2 e^{- \int_{-\infty}^{t_i} \Gamma(F(t)) dt}
\end{align}
\(k:\) Momentum of outgoing electron
\(t_i\) is time at which electron with momentum \(k\) ionized,
\(k = -\int_{t_i}^{\infty} F(t')dt'\)
\(f(F):\) Asymptotic wave function coefficient
\(\Gamma(F):\) Total rate
Weak field limit
For \(F\to 0\) adiabatic theory reduces to Keldysh theory
Nuclear-electron interaction
\begin{align}
V(x; R) = V\left(x+\frac{1}{2}R\right) + V\left(x-\frac{1}{2}R\right)
\end{align}
Finite range potential
\begin{align}
V(x)&=-\frac{a}{\cosh^2(bx)},
\end{align}
with \(a = 0.62772\) and \(b = 0.857\).
Gaussian half-cycle pulse
\begin{align}
F(t) & = F_0\exp\left(-\left[\frac{2t}{T}\right]^2\right)
\end{align}
TDSE solution
Convergence to adiabatic theory
Convergence to adiabatic theory
Convergence to adiabatic theory
Nuclear-nuclear interaction
H\(_2^+\) like interaction
\begin{align}
U_\text{ion}(R) & = \frac{A}{R^2} + B + C R^2
\end{align}
with \(A=0.26, B =-0.732635\) and \(C =0.01625\)
\(R\) is the internuclear seperation
Vibrational states, molecular ion
\begin{align*}
\left[-\frac{1}{2\mu} \frac{d^2}{dR^2} + U_\text{ion}(R)\right] \chi_v(R) = \varepsilon_v \chi_v(R)
\end{align*}
Adiabatic theory
\(\epsilon_\text{f} = \max\left(\frac{T_\text{e}}{T_\text{f}}, \frac{T_\text{n}}{T_\text{f}}\right) \to 0\)
PEMD (for half-cycle pulse)
\begin{align*}
P_v(k)
& = \frac{2\pi}{m^2} \frac{|f_{v}(F(t_i))|^2}{ |F(t_i)|} e^{-\int_{-\infty}^{t_i} \Gamma(F(t')) dt'}
\end{align*}
Total PEMD
\begin{align*}
P(k) = \sum_v P_v(k)
\end{align*}
Siegert state (real part)
Slow nuclei and field (AAnf)
AAnf
\(\epsilon_\text{nf} = \max\left(\frac{T_\text{e}}{T_\text{f}}, \frac{T_\text{e}}{T_\text{n}}\right) \to 0\)
Born-Oppenheimer ansatz
\begin{align*}
\Psi_{\text{BO}}(x,R,t) = \Psi(R, t)\psi_e(x;R,F(t))
\end{align*}
Electronic Siegert state \(\psi_e(x;R,F(t))\)
\begin{align*}
\left[H_x(F) - E_e(R,F)\right] \psi_e(x;R,F) = 0
\end{align*}
where
\(H_x(F) = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + Fx + V\left(x; R\right)\)
AAnf
Born-Oppenheimer ansatz
\begin{align*}
\Psi_{\text{BO}}(x,R,t) = \Psi(R, t)\psi_e(x;R,F(t))
\end{align*}
Nuclear wavefunction fulfills
\begin{align*}
i\frac{\partial}{\partial t}\Psi(R, t)
& = \left[-\frac{1}{2\mu} \frac{\partial^2}{\partial R^2}
+ E_e(R,F(t))\right] \Psi(R, t)
\end{align*}
Nuclear time evolution
PEMD
\begin{align*}
P_v^{\text{AAnf}}(k) & = \frac{2\pi }{|F(t_i)|} \left| g_v(t_i) \right|^2 \\
\end{align*}
\begin{align*}
g_v(t) = \int_0^\infty \chi_v (R) f(R,F(t)) \Psi(R,t) dR,
\end{align*}
\begin{align*}
\psi_e(x;R,F)|_{|x|\to \infty} = f(R,F) f(x,E_e(R,F),F)
\end{align*}
Build the PEMD
Regions of applicability
AAf
\begin{align*}
\epsilon_\text{f} = \max\left(\frac{T_\text{e}}{T_\text{f}}, \frac{T_\text{n}}{T_\text{f}}\right) \to 0
\end{align*}
AAnf
\begin{align*}
\epsilon_\text{nf} = \max\left(\frac{T_\text{e}}{T_\text{f}}, \frac{T_\text{e}}{T_\text{n}}\right) \to 0
\end{align*}
Small nuclear masses
\(T=30\) a.u.
Small nuclear masses
\(T=150\) a.u.
How much time does TDSE take?
How much time does TDSE take?
Many-cycle model
\begin{align}
F(t) = F_0 \cos \omega t
\end{align}
\begin{align}
P_{v}^{\text{AAnf}}(k)
\propto
% 2\pi \frac{\left|\tilde{g}_{v}(t_{(0, 1)})\right|^2}{\left|F(t_{(0, 1)})\right|}
\left|p^{\text{inter}}(k)\right|^2 \left|p^{\text{intra}}(k)\right|^2
\end{align}
Similar to SFA based model in PRA 93, 031401
Inter-cycle factor
\begin{align}
\left|p^{\text{inter}}(k)\right|^2
= e^{-c(k)} \left|\frac{\sin^2 [N d(k)]}{\sin^2 d(k)}\right|
\end{align}
\begin{align}
d(k)
& = \pi \omega^{-1} \Delta E(k) \color{gray} { + \frac{1}{2}s_0^{\text{cycle}}}\\
\Delta E(k) & = E_0^{\text{BO}}-\varepsilon_v - \frac{1}{2 m} k^2 - U_p
\end{align}
Ponderomotive energy: \(U_p = \frac{F_0^2}{4m\omega^2}\)
Intra-cycle factor
\begin{align}
p^{\text{intra}}(k) = 2 \cos \frac{\Delta\mathcal{S}_a(k)}{2}
\end{align}
\begin{align}
\Delta \mathcal{S}_a(k)
= & - \omega^{-1} \Delta E(k) \left[-2\sin^{-1} \frac{k\omega}{F_0}+\text{sgn}(k) \pi\right] \\
& - \frac{3}{2}k \frac{F_0}{m\omega^2} \sqrt{1 - \left(\frac{k\omega}{F_0}\right)^2}- \Delta s_0
\end{align}