
Measuring the Frequency of Light

with Mode Locked Lasers
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Locking the Cavity Modes of a Laser

single mode :

3 modes :

5 modes :

7 modes :

...
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The Soliton Laser

The effect of group velocity dispersion (GVD) and self phase 
modulation (SPM) on the puls reshaping cancel in a soliton.

prism pair chirped mirror

- SPM: laser crystal n(I) = n0 + I(t) n2 with n2 > 0
- GVD: prism pairs and/or chirped mirrors d21/dk2 < 0
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Mechanical Soliton: Runners on a Soft Surface
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I(1)

1

Carrier Envelope Phase of the Pulses

group velocity  phase velocity

group velocity = phase velocity I(1)

1

1n = n1rrepetition rate: 1r = 2p/T
T

1n = n1r + 1CE
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Carrier Envelope Offset Frequency

E(t) = A(t) e-i1ct

m=-
= S

+
Am e -im1rt - i1ct

1n = m1r + 1C = n1r + 1CE
1CE < 1r

I(1)

11c

7=0 7=p

cosine-pulse sine-pulse - cosine-pulse

7=p/2
D7=p/2 D7=p/2

6



Pulse-to-Pulse Carrier Envelope Phase Slippage

E(t)
n=-

= S
+

Ane -in1rt - i1CEt

E(t+T)
n=-

= S
+

Ane -in1rt-in2p - i1CEt - i2p1CE/1r

= E(t) e -iD7

D7

D7 = 2p 1CE/ 1r

1CE = D7/T
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Selecting a Sinlge Mode from the Comb
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Measuring the Carrier-Envelope Phase Slippage

it is simple to detect 1CE of an octave wide frequency comb:

1

1CE = 2(n1r + 1CE ) – (2n1r + 1CE )

n1r+1CE
x2

2(n1r+1CE ) 2n1r+1CEn1r+1CE
x2

2(n1r+1CE ) 2n1r+1CEn1r+1CE
x2

2(n1r+1CE ) 2n1r+1CE

I(1)

n 2n
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Controlling the Frequency Comb

1n = n1r + 1CE

depends on the pump power

depends on the cavity length

we can measure and control 
1r = 2p/T and 1CE = D7/T 
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Optical Frequency Counter

1n = n1r + 1CE
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locked to a Cs atomic clock

every mode can be used for 
optical frequency measurement



Optical Prescaler (Frequency Divider)

1n = n1r + 1CE
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locked to an optical reference

countable clock output

= (n + 1/k) 1r

locked to a fraction of 1r



Generating an Octave Spanning Comb

self phase modulation: n(I) = n0 + I(t) n2 with I(t) ~ |A(t)|2

non-linear phase shift after propagating the length l: F NL(t ) = – I(t) n2 1c l/c 

extra frequencies: F NL(t ) = – I(t) n2 1cl/c
. .
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Self Referencing the Frequency Comb
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Optical Synthesizer

Based on a 650 MHz Ti:sapphire 
ring laser (GigaOptics).

Based on a Cr:LiSAF laser made at
RTWH Aachen by P.Russbült, 
K.Gäbel and R.Poprave.
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Harmonic Frequency Chains vs Optical Synthesizers

Adjusting the transmission ratio by selecting n:
1n = n1r + 1CEO
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Self Differencing the Comb
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Testing the Self-Differenced Comb
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Frequency Measurement

rfcef

486 nm laser

beatf

Primary Reference

770 664

laser beat ce rf f f N f   

Phase lock
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Other Applications

- Precission Spectroscopy

- Time Domain: Stabilization of the CE phase 
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Doing Spectroscopy with the Comb

Pionieered by: Ye.V.Baklanov, V.P.Chebotayev, Appl. Phys 12, 97 (1977) and M.J.Snadden, A.S.Bell, E.Riis, A.I.Ferguson, Opt. Comm. 125, 70 (1996)

I(1)

1

all modes contribute.



HHGs with 114 MHz Repetition Rate

Nature 436, 234 (2005) & PRL Phys. Rev. Lett. 94, 193201 (2005)

focal spot ~5.3 µm 1/e diameter~5.5 x 1013  W/cm²



High Harmonics Generation (HHG)

fundamental pulse with 1c

free elctron burts with 1c

t

E(t)

tunnel ionization 
& recombination

energy

x e-
•free electrons emit HHG´s
•only odd orders created
•HHG vanish for smal elliptic polarization
•very short pulses make HHG´s merge
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Stabilzing the CE Phase of Intense Pulses
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Phase Sensitive High Harmonic Generation

Phys. Rev. Lett. 85, 740 (2000)40



Phase Sensitive High Harmonic Generation

cos drive

sin drive
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