Interaction of one-electron atoms with
electromagnetic radiation

In this chapter, we shall discuss the interaction of hydrogenic atoms with electro-
magnetic radiation. We shall first show how spectral lines arise, and at a later stage
we shall study the photoelectric effect and the scattering of radiation by atomic
systems. In considering the interaction of an atom with radiation, there are three
basic processes to analyse. First, just as a classical oscillating charge will radiate
spontaneously, an atom can make a spontaneous transition from an excited state
to a state of lower energy, emitting a photon which is the quantum of the electro-
magnetic field. This process is called spontaneous emission. Secondly, an atom can
absorb a photon from an external radiation field, making a transition from a state
of lower to a state of higher energy. Finally, an atom can also emit a photon under
the influence of an external radiation field. This process is called stimulated emis-
sion; it is distinct from spontaneous emission because it requires (like absorption)
the presence of an external radiation field. Stimulated emission has important
applications in the LASER (an acronym for Light Amplification by Stimulated
Emission of Radiation) and the MASER (Microwave Amplification by Stimu-
lated Emission of Radiation), which produce intense beams of coherent radiation,
and which will be discussed in Chapter 15.

In a rigorous treatment, we would have to start by studying quantum electro-
dynamics, in which the electromagnetic field is expressed in terms of its quanta —
the photons. Each photon corresponding to a field of frequency v carries an
amount of energy hv. Even in comparatively weak fields the photon density can
be very high (see Problem 4.1). Under these circumstances the number of photons
can be treated as a continuous variable and the field can be described classically
by using Maxwell’s equations. We shall proceed by using a semi-classical theory in
which the radiation field is treated classically, but the atomic system is described
by using quantum mechanics. The approximation will also be made that the
influence of the atom on the external field can be neglected. Clearly these assump-
tions do not hold in the case of spontaneous emission, because only one photon is
concerned - and one is not a large number! The proper treatment of spontaneous
emission is well understood, but is beyond the scope of this book. Nevertheless,
we shall be able to find the transition rate for spontaneous emission indirectly
using a statistical argument due to Einstein.
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4.1 The electromagnetic field and its interaction
with charged particles

The classical electromagnetic field is described by electric and magnetic field
vectors € and M, which satisfy Maxwell’s equations [1]. We shall express these
and other electromagnetic quantities in rationalised MKS units, which form part
of the standard SI system. The electric field € and magnetic field % can be gener-
ated from scalar and vector potentials ¢ and A by

E(r,t)=-Vo(r, 1) - % A(r, 1) 4.1)
and
B(r, 1) =V x A(r, 1) 4.2)

The potentials are not completely defined by (4.1) and (4.2), since the fields,
€ and 9B, are invariant under the (classical) gauge transformation A — A + Vy,
o — ¢ — dy/dt, where y is any real, differentiable function of r and ¢. The freedom
implied by this gauge invariance allows us to impose a further condition on the
vector potential A, which we shall choose to be

V-A=0 @.3)

When A satisfies this condition, we are said to be using the Coulomb gauge. This
choice of gauge is convenient when no sources are present, which is the case
considered here. One may then take ¢ =0, and A satisfies the wave equation
1 0°A
VoA o e 44
¥ o )

where c is the velocity of light in vacuo.
A monochromatic plane wave solution of (4.4) corresponding to the angular
frequency o (that is, to the frequency v = w/(2m)) is

A(r, t) = Ay(w)€ cos(k-r — ot + §,) 4.5)

where k is the wave (or propagation) vector and §, is a real constant phase.
Substituting (4.5) in (4.4), it is found that the angular frequency @ and the wave
number k (the magnitude of the wave vector k) are related by

w=kc (4.6)

The vector potential A has an amplitude | A ()| and is in the direction specified
by the unit vector &, called the polarisation vector. In addition, equation (4.3) is
satisfied if

[1] Useful texts on electromagnetism are those by Duffin (1968) and Jackson (1998).
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k-é=0 .7

so that £ is perpendicular to k and the wave is transverse.
Using the Coulomb gauge, with ¢ =0, the electric and magnetic fields are given
from (4.1), (4.2) and (4.5) by

é(r, 1) = €,(w)é sin(k-r — ot + 5,) (4.82)
and
B(r, 1) =€ (w) o' (k x &) sin(k-r — ot + J,) (4.8b)

where €,(w) = —~wAy(®). The electric field vector € has an amplitude |€o()]
and is in the direction of the polarisation vector £. From (4.6) and (4.8), we see
that for a radiation field of a given frequency, |9 |/|€| = 1/c. We also note that the
vectors €, B and k are mutually perpendicular. An electromagnetic plane wave
such as (4.8), for which the electric field vector points in a fixed direction &, is said
to be linearly polarised. A general state of polarisation for a plane wave propagat-
ing in the direction k can be described by combining two independent linearly
polarised plane waves with polarisation vectors €, (A= 1, 2) perpendicular to k,
where the phases of the two component waves are, in general, different. Any
radiation field can be expressed as a superposition of monochromatic fields.

It is useful to relate the energy density of the field to the photon density,
keeping in mind that each photon at a frequency v carries a quantum of energy of
magnitude hv = 7. The energy density of the field is given by

%(ed‘& P+ |BPo) = £:83(w) sin’(k-r — ot + ,) (4.9)

where g, and i, are the permittivity and permeability of free space, and g =c2

The average of sin’(k-r — t + §,) over a period T =2nt/@is given by
1T s 1
—j sin’(k-r — ot + §,) dt =~ (4.10)

Using this result the average energy density p() is
1 2 1 2 A2 .
p(w) = ‘2‘30 () = ) £,0°A(w) (4.11)

If the number of photons of angular frequency @ within a volume V is N(w), the
energy density is #wN(w)/V, and equating this with (4.11) the amplitude of the
electric field is found to be

16o(@)] = [2p(0)/&] * = [2haN(w)/(&V)]"* 4.12)

The average rate of energy flow through a unit cross-sectional area, normal to
the direction of propagation of the radiation, defines the intensity I(w). Since the
velocity of electromagnetic waves in free space is ¢, we have
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I(w) = p(w)c = %soc‘éﬁ(co) - %eoca)zAﬁ(w) =hoN(w)c/V (4.13)

A general pulse of radiation can be described by representing the vector poten-
tial A(r, ¢) as a superposition of plane waves of the form (4.5). Taking each plane
wave component to have the same direction of propagation k and to be linearly
polarised in the direction £, we have

oo

N J Ay(®) cos(k-r — ot + 8,) do @.14)
0

When the radiation is nearly monochromatic, the amplitude Ay () is sharply
peaked about some value @, of . The radiation from a hot gas or glowing fila-
ment arises from many atoms each emitting photons independently. As a result,
within the integral over @ the phases §, are distributed completely at random,
and the radiation is said to be incoherent. This is characteristic of light from all
sources with the exception of lasers. Because of the random phase distribution,
when the average energy density is calculated from the squares of € and B, the
contribution to the energy density from each frequency can be added together,
the cross terms averaging to zero [2]. The average energy density p and intensity
I for radiation composed of a range of frequencies can then be expressed as

p= fﬁ p(w) do, I= f” l(0) do (4.15)
0 0

where p(w) and I(w) are the energy density and intensity per unit angular fre-
quency range, given by (4.11) and (4.13), respectively.

In Chapter 15, the radiation from a single mode laser, which exhibits a high
degree of coherence and is nearly monochromatic, is discussed. In this case, the
phase 8, is constant in a small region of width Aw centred about an angular
frequency @y, so that §, can be eliminated from (4.14) by changing the (arbitrary)
zero of time. It follows that the expressions (4.15) remain valid for nearly mono-
chromatic coherent radiation.

Charged particles in an electromagnetic field

The Hamiltonian of a spinless particle of charge ¢ and mass m in an electro-
magnetic field is

H= ZL (p-9qA) +q¢ (4.16)
m

where p is the generalised momentum of the particle. The steps leading to (4.16)
are given in Appendix 6. Ignoring for the present small spin-dependent terms, the

[2] While this is intuitively clear, a detailed proof is too long to be given here. This point is discussed
by Marion and Heals (1980).
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Hamiltonian of an electron of mass m in an electromagnetic field is given by

(4.16), with g = —e.
Since the Hamiltonian H must be Hermitian, we shall write (4.16) in the form

P4 4. . 4 s
H= (A-p+pA)+ A’+q¢d 4.17)
2m  2m 2m

In the position representation, p is the operator —i#V and the time-dependent
Schrodinger equation is

2 2
in S w(r, 1) = e in L AVV-A) + LAY+ go | W(r 1) (418)
ot 2m 2m 2m

An important property of equation (4.18) is that its form is unchanged under
the gauge transformation

A(r, 1) =A’(r, 1) + Vx(r, 1) (4.192)
o(r, 1) =¢'(r, 1) - g; x(x, 1) (4.19b)
W(r, 1) = ¥(r, 1) expligx(r, 1)/h] (4.19¢)

where y is an arbitrary real, differentiable function of r and t. That is, the wave
function W'(r, f) satisfies the equation

2 a ’ hZ 2 3 q ’ ’ qZ 2 ’ ’
ih—W(r 1) =|-—V +ih—(A V+V-A)+—A%+q¢" | ¥ (r, 1)
ot 2m 2m 2m
(4.20)

Since, as seen from (4.19¢), a gauge transformation is a particular case of a unitary
transformation, measurable quantities (such as expectation values or transition
probabilities) calculated in different gauges must be the same. The property of
gauge invariance allows us to adopt the Coulomb gauge defined by (4.3) and to
take ¢ = 0, as we have seen above. The time-dependent Schrodinger equation

(4.18) then reduces to
2 2
ihi‘{’(r, 1) = —h—V2+ih—q—A-V+1—A2 Y (r, 1) 4.21)
ot 2m m 2m

where we have used the fact that in the Coulomb gauge
V-(A¥)=A-(V¥) +(V-A¥
=A-(V¥) 4.22)
Interaction of one-electron atoms with an electromagnetic field

Let us now consider the interaction of the electromagnetic field (4.8) with a
one-electron atom (ion), containing a nucleus of charge Ze and mass M and an
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electron of charge g = —e and mass m. We shall restrict ourselves here to ‘ordinary’
hydrogenic systems such as H, He", .. .. In that case the nuclear mass M is very
large compared to the electronic mass m. In fact, we shall make the infinite
nuclear mass approximation, thus neglecting recoil effects (see Problem 1.16) and
reduced mass effects. The interaction between the radiation field and the nucleus
can be ignored to a high degree of accuracy. However, we must include in the
Hamiltonian the electrostatic Coulomb potential —Ze*/(4ng r) between the elec-
tron and the nucleus. It is convenient to regard this electrostatic interaction as an
additional potential energy term, while the radiation field is described in terms
of a vector potential alone satisfying the Coulomb gauge condition (4.3), as dis-
cussed above. The time-dependent Schrodinger equation for a one-electron atom
in an electromagnetic field then reads

ih%‘i’(r, f) = H(t)¥(r, 1) (4.23)
where
2! 2 2
iyt B L Ry S (424)
2m (4mey)r m 2m

We can also write (4.23) in the form

ih% W(r, 1) = [H, + Hi(1)] W(r, 1) 4.25)
where
2 2
Hy= -y 2 (4.26)
2m (4ney)r

is the time-independent Hamiltonian of the one-electron atom (ion) in the absence
of the electromagnetic field, and

e e .
H;, (1) = ;A'P % %A

2z B e .,
= -ii—A-V+—A 427
m 2m
is the Hamiltonian describing the interaction of the hydrogenic atom with the
radiation field.
In this chapter, we shall treat only the weak field case [3] in which the term in
A? is negligible [4] compared with the term linear in A. Accordingly, we shall
write H,,(r) = H'(t), where

[3] Atoms in intense electromagnetic fields will be discussed in Chapter 15.
[4] Although we are treating the case for which A is very small compared with A, the photon density
is assumed to be high enough for the radiation field to be treated classically. Both conditions are
well satisfied in the emission and absorption processes we shall describe.

i
!
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H(t)=-in=A-V=LAp (4.28)
m m

will be treated as a small perturbation.

Transition rates

Having neglected the term in A% we see that the time-dependent Schrodinger
equation (4.25) may be written as '

ih%‘l’(r, 0) = [H, + H'0)]¥(r, 1) (4.29)

where H, is given by (4.26) and H’(z) by (4.28).

We shall study this problem by using the time-dependent perturbation theory
given in Chapter 2. Referring to equation (2.297), and dropping the superscript
(0) for notational simplicity, we denote by E, the eigenvalues and by y, the corres-
ponding normalised eigenfunctions of the hydrogenic Hamiltonian (4.26), so that

Hyy, = E ‘ (4.30)

Because the set of functions y; (including both the discrete set studied in Chapter 3
and the continuous set corresponding to unbound states) is complete, the general
solution ¥ of the time-dependent Schrédinger equation (4.29), which we assume
to be normalised to unity, can be expanded as

Y(r, 1) = Y (1) yi(r) exp(<iE,t/h) 4.31)

where the sum is over both the discrete set and the continuous set of hydrogenic

eigenfunctions y;. The coefficients c,(r) satisfy the coupled equations (2.336) with
A =1, namely

¢y(r) = (ih) ™ Y, Hp(1)ex(r) exp(io) (4.32)
k
where
Hy (1) = (y | H' (1) | wi) (4.33)
and
Wy = (E,— E)h 4.34)

Let us suppose that the system is initially in a well-defined stationary bound
state of energy E, described by the wave function y, and that the pulse of radia-
tion is switched on at the time 7 = 0. Thus the initial conditions are given by

(t < 0) =6, (4.35)
and, to first order in the perturbation H’, we have (sec (2.343b))

YA 8 i
L

" M‘muv.lulm"“"’ "
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( §
e$(t) = (i) f Hi, (1) explio,t’) dr
0

i = —% f (I A-V| v expliont) df (4.36)
0

* where ,, = (E, — E,)/h and

! (WlA-V]y,)= f V(A Vy,(r) dr 4.37)

To proceed further, we use the vector potential A(r, r) given by (4.14) to obtain

0

) = - f “deo(w)[expﬁsw X s lexp(ik-1)é- V| y,) f 'dr” expli(@y, - )]

+exp(=id, ) (W, | exp(-ik-r)E- V] y,) f dr expli(o, + w)t’]J (4.38)
0

In general, the duration of the pulse is much larger than the periodic time (2nt/,,)
which is for example about 2 x 10™ s for the yellow sodium D line at 5890 A. It
follows that the first integral over ¢” will be negligible unless @,, = o, that is unless
E, = E,+fiw. Thus we see that in this case the final state of the atom has greater
energy than the initial state and one photon of energy #iw is absorbed from the
radiation field. On the other hand, the second integral over " in (4.38) will be
negligible unless w,, = —, that is unless E, = E, — Ai®. In this case the initial state
of the atom has greater energy than the final state and one photon of energy i@
is emitted. Since only one of these conditions can be satisfied for a pair of states @
and b, we can deal with the two terms separately.

We shall assume for the moment that both the initial and final atomic states are
discrete (‘bound-bound’ transitions). The photoelectric effect, which corresponds
to transitions from a discrete initial state to final states lying in the continuum
(‘bound—free’ transitions) will be studied in Section 4.8.

Absorption

We start with the first term of (4.38), describing absorption. Using the fact that the
radiation is incoherent — so that no interference terms occur — we find that the
probability for the system to be in the state b at time ¢ is

2
les (o) = %[ij J AY(0)| M, (0) PF(t, 0 - ,,) do . (439
0

where we have defined the matrix element M,, as

My, = (vylexp(ik-)é- V| y,) = f Wi(E) exp(ik-n)é- Vy,(r) dr (4.40)
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and we recall that ® = kc. Upon setting @ = @ — ®,,, the function F(t, @) which
appears in (4.39) is seen to be the same as the function F(1, ®) introduced in
Chapter 2. That is (see (2.348)),

1- ot
F(t, ®) = ——;S £

; D= 0— Wy, (4.41)
The properties of F(t, w) discussed in Section 2.8 may therefore be used directly here,
provided that we make the substitution @ — @. In particular, since for large ¢ the
function F(t, @) has a sharp maximum at @ = 0, namely at @= @,,, We can set 0= @,
in the slowly varying quantities Aj(w) and | M,,,(®) [*, take these factors outside the
integral in (4.39) and extend the limits of integration to te. Hence we have

2
PO F = [ij A3(0,) | My (@)1 j Ft, @) do (4.42)

—co

and using the result (2.349), we obtain
2
| e
I (@) = 5[;) A§ (@) | My (05,) 't (4.43)

Thus the probability |¢{"(¢) |* increases linearly with time and a transition rate for
absorption (integrated over ) can be defined in first-order perturbation theory as

Wba =

2
- 5 lc(bl) (t) |2 = g(%} A(z)(wba) I Mba(wba) |2 (4'44)

In terms of the intensity per unit angular frequency range, I(), given by (4.13),
the integrated transition rate for absorption is given by

a? [ e ) (wy,
W= — [——J—(_ZQ | Mo @4,) I (4.45)
mic\ 4ng, | o,

and is seen to be proportional to ().
The rate of absorption of energy from the radiation field, per atom, is (hr@,e) Wy
It is convenient to define an integrated absorption cross-section o,, which is the
rate of absorption of energy (per atom) divided by /(®,,). That is,
Anlah?
Opa = 3 | Mba(wba) |2 (4'46)

m-@p,

where o = ¢%/(4nghc) = 1/137 is the fine structure constant. Since the incident
flux of photons of angular frequency @, is given by I(w,,)/(hw,,), we see that the
integrated cross section 0,, may also be defined as the transition probability per
unit time per atom (integrated over ®), W,,, divided by the incident photon flux.
It should be noted that the integrated absorption cross section oy, has the dimen-
sions of area divided by time ([L]* [T]™).




192 Interaction of one-electron atoms with electromagnetic radiation

Stimulated emission

To calculate the transition rate for stimulated emission, we return to (4.38) and in
particular to the second term in the expression for ¢{"(f), which corresponds to a
downward transition (E, = E, — iw) in which a photon of energy fiw is emitted.
It is convenient to interchange the labels of the states a and b so that the state b
is again the one with higher energy. The transition b — a corresponding to stimu-
lated emission may then be viewed as the reverse transition of the absorption
process a — b which we have just studied. Carrying out the same manipulations
as we did for absorption, we find that the transition rate for stimulated emission
(integrated over w) is given by

W, = ;"C (;—gj’—(;‘)’:—) V(0,0 4.47)
where
M, = (y,lexp(-ik-1)E- V|y;)
[ ito expkone: Vi) ar (4.48)

Integrating by parts, and using the fact that &-k=0, we have

M,, =-Mj, (4.49)
and comparing (4.45) and (4.47), we find that
W, = W, (4.50)

Thus we see that under the same radiation field the number of transitions per
second exciting the atom from the state a to the state b is the same as the number
de-exciting the atom from the state b to the state a. This is consistent with the
principle of detailed balancing, which says that in an enclosure containing atoms
and radiation in equilibrium, the transition probability from a to b is the same as
that from b to a, where a and b are any pair of states.

An integrated stimulated emission cross-section G, can be defined in analogy
with the absorption cross-section (4.46) by dividing the rate at which energy is
radiated by the atom, (iw,,)W,,, by the intensity / (w,,). From (4.50) we have

6’,,,, . O-ba (4.51)

Despite the fact that the transition rates W,, and W, are equal, stimulated
emission is usually much less intense than absorption. Indeed, under equilibrium
conditions the initial population of the upper level b is smaller than that of the
lower level a because of the Boltzmann factor exp(—#fay,/(ksT)). However, ifa
population inversion is achieved between the two levels a and b, then stimulated
emission becomes the dominant process. This is the case in the maser and the
laser where stimulated emission enables atomic or molecular systems to amplify
incident radiation, as we shall see in Chapter 15.
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Spontaneous emission

In quantum electrodynamics (QED), the part of the vector potential describing
the absorption of a linearly polarised photon with wave vector k from an N-photon
state has the form [5]

112
Ry= g 2O |2 il = b 53] 4.52)
Ve,o 2

and it can be shown that the QED transition rate for absorption is given in first-
order perturbation theory by

4n? 2 ) N(w,, )h
= 2| £ | N @)t ot o500 o) 4.53)
m* \4ne, ) Va,,

Using (4.13) and integrating over a range of angular frequencies about ®,,, this
result is seen to be identical to (4.45).

The corresponding part of the vector potential describing the creation of a
photon, adding a single photon to an N-photon state, is

A= é{z[zv(w) +14

1/2
1
~ expl-i(k-r— @t + 8 4.54
Ve,w J 2 expl-i(kr— i+ 6,)] )

and the first-order QED transition rate for emission is given by

o An? [ e* | [N(w,)+1]A
W =—
m* | 4ng, Vaw,,

[M,|*6(0~ @) (4.55)

After integrating over @, this expression is seen to be identical to the semi-
classical result (4.47), provided N(w,,) + 1 is replaced by N(w,,). The semi-classical
approximation amounts to the neglect of 1 compared with N(w,,), which is the
same as neglecting the possibility of spontaneous emission. In the absence of an
external field one has N = 0 and the transition rate for the spontaneous emission of
a photon, W, is given from (4.55) by

4m? 2 /]
Wiy=—— | |M,, 80~ ,,) (4.56)
m* | 4ne, ) Vo,

What can be observed is the emission of a photon within an element of solid
angle dQ about the direction k specified by the polar angles (6, ¢). In order to
obtain the physical transition rate, we must sum (4.56) over the number of allowed
photon states in this interval. To do this, we need to calculate the density p,(®) of
the final photon states, in accordance with the Golden Rule (2.362).

N

[S] A detailed discussion can be found in Sakurai (1967).
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Density of states

Let the volume V be a cube of side L. (In fact the shape does not matter provided
V is large.) We can impose periodic boundary conditions [6] on the function
exp(—ik-r) which is contained in the expression (4.54) representing the wave
function of the emitted photon. That is,

o k=20, k=2n, 4.57)

=T z

where n,, n,, n, are positive or negative integers, or zero. Since L is very large, we
can treat n,, n, and n, as continuous variables, and the number of states in the

range dk = dk, dk, dk._ is

3
dn, dn, dn, = (LJ dk, dk, dk,
2n

3
- [L] K2 dk dQ (4.58)
2

Expressed in terms of V = 13 and @ = kc, the number of states in the angular fre-
quency interval do with directions of propagation within dQ is

V o’
pa((l)) do dQ = -(Et)—z"c—s do dQ (4.59)

Using (4.56) and integrating over the angular frequency o, the transition rate for
the emission of a linearly polarised photon into the solid angle dQ in the direction

(6, ¢) is then given by

h 2
(0, 9) dQ = W[;e ](Dbalea(wba)'z dQ (4.60)
0

The total transition rate is found by summing over each of the two independent
polarisations of the photon, corresponding to polarisation vectors &, (A=1,2)and
integrating over all angles of emission. That is,

f e? :
Wasb ___( ] J dQ z W, lMéa(wba)lz (4°6l)

2nm?c? | 4ng, o

where M}, is given by (4.40), with € replaced by ;.

[6] The imposition%f periodic boundary conditions amounts to assuming that all space can be divided
into identical large cubes of volume L3, each containing an identical physical system. The vector

potential A must then be periodic with period L along each of the three Cartesian axes.
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The dipole approximation

In many cases of practical interest the matrix element M,, defined in (4.40) can be
simplified by expanding the exponential exp(ik-r) as

exp(ik-r) =1+ (ik-r) + %(ik-r)2 ... (4.62)

Consider for example the case of optical transitions. The atomic wave functions
extend over distances of the order of the first Bohr radius of the atom, that is about
1 A (=107 cm). On the other hand, the wavelengths associated with optical trans-
itions are of the order of several thousand angstroms, so that the corresponding
wave number k = 2rt/A is of the order of 10° cm™. Thus the quantity (kr) is small
for r < 1 A and we can replace exp(ik-r) by unity in (4.40). More generally, if a is
a distance characteristic of the linear dimensions of the atomic wave functions,
and if ka < 1, we can replace exp(ik-r) by unity in (4.40). This is known as the
dipole approximation. We note that since A > a this is a long-wavelength approx-
imation, which amounts to neglecting the spatial variation of the radiation field
(that is, neglecting retardation effects) across the atom.

As the wavelength of the radiation decreases (that is, as the frequency increases),
the dipole approximation becomes less accurate. For example, it is a poor approx-
imation for ‘bound-bound’ X-ray transitions. Retardation effects must also be
taken into account for the continuous spectrum when photons of high frequency
(whose wavelength A does not satisfy the condition A > a) are absorbed or
emitted. This will be illustrated in Section 4.8, where we shall study the photo-
electric effect.

It is important to note that in the dipole approximation both the vector poten-
tial A(7) and the electric field €(¢) depend only on the time ¢, and it follows
from (4.2) that the magnetic field & vanishes. In addition, the matrix element M,,
of equation (4.40) is replaced by M}, where

Mp, =€y, V) (4.63)

In terms of the momentum operator p = —i#V = mr, we can also write (4.63) in the
form

1 im . .
MB;=%8'(%IPI%>= 78~<%Irl%> (4.64)

Now, applying the Heisenberg equation of motion (2.113) to the operator r, we have

i = (ih)'[r, H,)] (4.65)

where we have replaced H by H, since we are working in perturbation theory.
Therefore

(W |k w,) = (i) (y [eH — Hor | )

= (in)(E, - Ep) (W5 rl v (4.66)
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or, in a more compact notation,

Po, = IM@yX,, (4.67)
where

Po = (W PI W) = m(y ¥ y,) (4.68)
and

o = (W T W) (4.69)

This allows us to express Mp, in the form

MP = - ’"2”’" ér, (4.70)

The transition rate for absorption in the electric dipole approximation may now
be obtained by substituting M}, for M,, in (4.45). That is,

Wi, = s [ < ]K%)Ié'rbalz 4.71)
ch? | 4ne,

It is convenient at this point to introduce the electric dipole moment operator

D=-er 4.72)
and its matrix element

D, =—er, 4.73)
so that

Mp =" g.p,, 4.74)

and the transition rate W2, becomes

e [ 1 ] 5
Wi=—7 1(@,,)1€-D,,| 4.75)
ch® | 4ng,

The quantity £-D,, is the matrix element of the component of the electric
dipole moment in the direction of polarisation &, between the states b and a. If D,
is non-vanishing, the transition is said to be an allowed or electric dipole (E1) trans-
ition. If D, vanishes, the transition is said to be forbidden. When the transition is
forbidden, higher terms in the series (4.62) may give rise to non-vanishing trans-
ition rates, but these are much smaller than for allowed transitions. These higher
terms lead to transitions which are somewhat similar to the types of radiation
arising from a multipole expansion in classical radiation theory [7]. For example,
the second term (ik-r) in the expansion (4.62) gives rise to magnetic dipole (M1)

[77] See for example Jackson (1998).




SR

4.3 The dipole approximation =~ 197

and electric quadrupole (E2) transitions. These transitions will be studied in
Chapter 9 for a general atom.

If the matrix element M,, in its unapproximated form (4.40) vanishes, the
transition is said to be strictly forbidden (in first order of perturbation theory). In
this case, higher orders of perturbation theory must be considered, and the trans-
ition may occur through the simultaneous absorption or emission of two or more
photons. It should be noted that the quadratic term ¢’A?%(2m) of the interaction
Hamiltonian (4.27) must then be included in addition to the linear term (e/m)
A -p considered in the above treatment.

Let us now return to (4.71). Defining © as the angle between the vectors & and
I,,, We may write

p_4m [ & 2 2
Wp=—— I(w,,)|r,,|* cos’® (4.76)
ch® | 4neg,
where
ool = [ X007 + [yl + 125 4.77)

For unpolarised radiation, the orientation of & is at random, and cos*® can be
replaced by its average over all solid angles of 1/3 (Problem 4.2), giving

we=2T [ L)1, D,p .78)
ba 3Cﬁ2 47'580 (Dba ba .

It is worth noting that because of (4.50) the expression (4.78) also represents
the transition rate for stimulated emission in the dipole approximation correspond-
ing to the transition b — q, namely the dipole approximation to W,,. On the other
hand, the transition rate for spontaneous emission of a photon into the solid angle
dQ is given in the dipole approximation by substituting (4.74) into (4.60). That is,

1
2nhc?

Wasl;D (07 ¢) dQ = [LJ wzalé.Dbalz dQ
4me,

1 & 34 2
= —— | W}, €1, |7 AQ 4.79
2nhc? [41t€0] bol€ Foal U™

By summing this expression with respect to the two polarisation directions of the
photon and integrating over the angles one obtains the full transition rate for spon-
taneous emission of a photon in the dipole approximation, namely (Problem 4.2)

. 4 1
WP = 0ot [m] ®;,|D,,I? (4.80a)
0
= %’j DI, (4.80b)

where « is the fine structure constant.
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The velocity and acceleration forms of the dipole matrix elements

The matrix elements D,, of the electric dipole operator have been written in terms
of what is often called the length matrix elements r,, given by (4.69). They can also
be expressed in terms of the momentum operator p = -i#V or the gradient of the
potential energy

Ze’
(4meg)r

V(r)=- (4.81)

in which case the matrix elements are said to be expressed in velocity or acceleration
forms, respectively. To see this, we first remark that by using (4.69) and (4.30) we

can write
I, = Hy —rHy|y, 4.82
w=E _E, (w,| Hy ol W) (4.82)
Taking H, = —(#*/2m)V> + V, and using the fact that V commutes with r, we have
#? 1
Y, = —— Vi —1V?|y, 4.83
b 1 B, — E, (Wl v (4.83)
Noting that
V2 ry,(r)] = 2V, (r) + rV2y,(r) (4.84)
and that p = —iAV, we retrieve the result (4.67). That is,
ih 1 i
By = —— J=- ; 4.85)
b " B B (wilply.) - P (

In a similar way, we can write the matrix element p,, in the form

if
Poa = — <Wb|H0V_VHOIWn>
E b~ LTa
if
=- VV-VVl]y,
E,—E, (Wl |y
in i
= <|//b| (VV) I V’a) = (VV )ba (4'86)
E b E a ("

Using these results the length, velocity and acceleration forms of D,, are, respectively,
D;, = —er,, (4.872)
D}, = ——p,, (4.87b)

ba
/ and
e
Dj, = ———5 (V) (4.87¢)

ba

r
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Provided that the wave functions y, and v, are exact eigenfunctions of H,, the
three forms of D, give identical results. However, if approximate wave functions
are employed, the three forms of D,, will yield different numerical values.

The Schrédinger equation in the velocity and length gauges

Let us rewrite the time-dependent Schrédinger equation (4.25) in the form
5.0 e e’ .,
ih—Y(r,t)=|Hy+ —A-p+—A? |¥(r, 1) (4.88)
ot m 2m

where H, is given by (4.26) and we have used (4.27). It is interesting to note that
within the dipole approximation (so that the vector potential A depends only on
the time 1), the term in A” in (4.88) can be eliminated by performing the gauge
transformation

: 5 o
W(r, 1) = exp [-ie— f AX() dt’} YV(r, 1) (4.89)
# 2m
This gives for WV(r, ) the new time-dependent Schrodinger equation (Problem 4.3)
iﬁaiw(r, 1= [HO + iA(t)-pJ‘PV(r, ) (4.90)
t m

which is said to be in the velocity gauge since the interaction term

H(0) =< AG)p = —”’7" NGB @91)

couples the vector potential A(r) to the velocity operator p/m.

Another form of the time-dependent Schrodinger equation in the dipole
approximation can be obtained by returning to equation (4.88) and performing a
gauge transformation specified by taking y(r, r) = A(¢)-r. Using the fact that in
the dipole approximation the electric field is given by €(r) = —dA(r)/dt, we see
from equations (4.19) with g = —e that

A'=0 (4.92a)
= % A) 1 =-%())r (4.92b)
W'(r, t) = exp [% A(t)-r] Y(r, 1) (4.92¢)

The new time-dependent Schrédinger equation for W/(r, 7) = W'(r, 1) is (Problem 4.4)

i %‘PL(r, 1) = [Hy + ¢B() -] ¥L(x, 1) (4.93)
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which is said to be in the length gauge because the interaction term
HY (1) = (1) r (4.949)

couples the electric field €(r) to the position operator r. Since the electric dipole
operator is given by D = —er, we see that H L =_%(¢)-D. This is the reason why
the approximation in which the electromagnetic field is taken to be uniform over
the atom is called the dipole approximation.

Spontaneous emission from the 2p level of hydrogenic atoms

As an example of the calculation of a transition rate for spontaneous emission in
the dipole approximation, we shall consider the transition from the 2p level of a
hydrogenic atom with nuclear charge Ze to the ground state, starting from (4.80b).
In this equation, b represents the 2p state of the atom with magnetic quantum
number m while a is the 1s ground state. The angular frequency @,, can be found
from (4.34) and (3.30). It is

Wy, = (Eb - Ea)/h

3 mc?
- Zo)? 4.95
8 h (Za) 495)

From (4.69) and (3.53) the matrix element r,, is seen to be

= j " Ry()R(r)r dr f Y1,(6, 6) F You(6, 9) 4O (4.96)

0

where £ is a unit vector in the direction of r. Using the expressions for Ry (r) and
R,,(r) given in (3.59) the radial integral in (4.96) can be evaluated:

0 0 0

5
a, 24 (2
=——|= 4.97)
2 26) ‘
To perform the angular integration in (4.96), the x, y and z components of T are
expressed as

J i Ry ()R yo(r)r’ dr = [aéj _1\/2_ f ol exp[-3Zr/(2a,)] dr

(F),=sin 6 cos = \/235 [-Y14(6, 9) + Y, (6, 9)]

(F), =sin @ sin ¢ = \/%; i[Y,,(6,0)+Y,4(6, ¢)] (4.98)

(F),=cos 6= \/43E Y10(6, 9)




