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Let us write
dk, = k} dk; dQ (4.198)

where dQ =sin 6 d6 d¢ and (6, ¢) are the polar angles of k. Using (4.193), we also
have

k;m
dk; = -y dE, dQ (4.199)

so that we may rewrite (4.196) in the form

dn’o (7 k E, - E,
Oy = —— f dE; f dQ—L | M, (,,)P 5[(1) = ;J (4.200)
m- Jo Wy, f
Performing the integration over E, with the help of the delta function, we find that
4n? k
= [—fJ f IM,,(0)]” dQ (4.201)
m (0]

The differential cross-section for an electron to be ejected within the solid angle
dQ in the direction (6, ¢) is therefore

4 k
ge _Jwen [—f] My, (@)? (4.202)
m m

dQ

From (4.40) and (4.195) the matrix element M,, is given by

M,, = (2n)>"? f exp(-ik;r) exp(ik-r) - Vi (r) dr (4.203)
Upon integration by parts, we find that

M= Q) (= k)] [ explitk ~ k-l 1) ar 4204)

Since k€ = 0, we have
&-(k—k)=—k;cos y (4.205)

where y is the angle between the direction of ejection and the direction of
polarisation (see Fig. 4.7). The integral appearing in (4.204) is proportional to the
Fourier transform of the ground state wave function y;(r), namely

1/2
73 Zla
- dresel Z) __Zlay 4.206
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where we have introduced the vector

K=k-k, (4.207)
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Figure 4.7 The angles employed in the discussion of the photoelectric effect. The incident
radiation is in the Z direction, with polarisation vector in the X direction. The momentum of
the ejected electron is fk,.

From (4.202) and (4.204)—(4.207), the differential cross-section is seen to be
given by

do f\[ k7| Z%aj cosy
— =Ra|— || L | =" 4.208
0 (m]( o |27 + Kal] Chop

Without loss of generality we can take the direction of propagation k of the
radiation to be along the Z axis and the direction of the polarisation vector & to
be the X direction. Then, as K, is in the direction Q = (6, ¢), we have (see Fig. 4.7)

cos y =sin 6 cos ¢ (4.209)
and
K?=k*+k} - 2k k;cos 6 (4.210)

At incident photon energies well in excess of the ionisation threshold (=13.6 eV
for atomic hydrogen), when 7@ > | E |, we have from (4.193) and (4.197)

- h’k;
2m

ho (4.211)
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and since o = kc it follows that

k~hkf_vf

= (4.212)
k ; 2mc  2c

where v, is the velocity of the ejected electron. In the non-relativistic regime, for
which v//c < 1, we can use this result to write

K=k [1 ~ 2L cos ej 4.213)
4 -~

Moreover, since i = #°k}/(2m) > | E, | and E,, = -Z*[¢*/(4ne,)]/(2a,), we have

kiad> 2h—’f |E,|a2= 22 (4.214)
so that
7+ Ka} = k3a [1 e 9] 4.215)
C

and the differential cross-section (4.208) becomes
S in2 2
d_o_32a(h] Z sin6 cos’¢

dQ o(ka,)’ ” 4
1-—cos@

2 (4.216)
m
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We note that the ejected electrons have a cosine-squared distribution with
respect to the polarisation vector € of the incident radiation. For an unpolarised
photon beam an average must be made over the polarisations of the photon, so
that we have in that case

5 n2
40 _16al 2|2 il 4217
dQ m ) w(ka,)’ 5 f
[1 e BJ
c

We remark that both cross-sections (4.216) and (4.217) exhibit a sine-squared
distribution in the angle 6, which favours the ejection of the electrons at right
angles to the incident photon beam. The quantity (1 — v, cos 6/c)™ also affects the
angular distribution by enhancing the ejection of electrons at small angles, but
since v;/c < 1 it only yields a small correction to the sin’@ distribution. In fact,
because

-4
[1—U—fcose] =1+42Lcos+... (4.218)
c c
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we see that if we drop terms of order (v;/c)* we may write the differential cross-
section (4.217) as

5
99 _t6a| B | -2 gnts|1 + 4 oo (4.219)
dQ m ) o(kay)’ c

Upon integration over the angles (6, ¢) of the ejected electron, the total cross-
section (for an unpolarised incidert photon beam) is given by

S
_128n (R 20 (4.220a)
3 m ) o(ka,)’

Using (4.211) and the fact that E,, = —~Z*[e*/(4ne,)]/(2a,) = —(1/12)mc*(Zar)?, we
may also write (4.220a) as

712
= 2 oz 1Bl | o (4.220b)
3 ho

712
O = 16(" 825[ ﬁwj a2 (4.220¢)

We note from (4.220) that the photoelectric total cross-section decreases
like (hw)’? with increasing photon energy and increases like Z° with increasing
nuclear charge. We also remark that the dipole approximation (obtained by set-
ting exp(ik-r) = 1 in the matrix element (4.203)) yields the leading term in the
differential cross-section (4.219), such that retardation effects of order v//c are
neglected. As seen from (4.212), these retardation effects become more important
if the wave number k (and hence the frequency v) of the photon increases, as
expected from our discussion of the dipole approximation in Section 4.3.

Let us call do‘”/dQ the leading (dipole) term in (4.219). We then have

(0) 5
Ho™ rtme |2 sieg (4.221a)
dQ m ) o(ka,)’

do®
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=320Z7 [IE“lj sin’6 a? (4.221b)
hw

It is also worth noting that the dipole approximation yields the complete result
(4.220) for the total cross-section o,,.

Finally, we recall that the above formulae are applicable for sufficiently high, but
non-relativistic energies E; of the ejected electron, such that | E,(| < E; < mc? and for
small enough values of Z. These formulae can be applied not only to photoionisation
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from the ground state of hydrogenic atoms and ions, but also approximately to the
photoionisation of electrons from the K shell of complex atoms.

The scattering of radiation by atomic systems

So far in this chapter, the processes considered for obtaining information about
the properties of atoms are the emission or absorption of radiation in the case
that the electromagnetic field is weak enough for first-order perturbation theory
to apply. Additional information can be obtained by using strong fields, and this
will be considered in Chapter 15. Here we shall discuss briefly the scattering of
radiation by atomic systems again in the weak field case.

The scattering of radiation by an atom or molecule must be at least a second-
order process. In step 1, a photon of energy #im and wave vector k is absorbed
exciting the atomic system from a state a to a state n. In step 2 the atomic system
emits a photon of energy 71" and wave vector k’, and is de-excited from the state
n to a final state b. Alternatively, the two steps can occur in reverse order, the
photon of energy 2w’ being emitted first and the photon of energy 71 being
absorbed subsequently. In what follows, it will be assumed that a represents a
non-degenerate ground state.

If the final state b of the system is the same as the initial state a, then, neglect-
ing very small recoil effects (see Problem 1.16), the emitted radiation has the same
frequency as the incident radiation (@’ = w). This elastic scattering process is
called Rayleigh scattering; it was first discussed by Lord Rayleigh in connection
with the scattering of light by molecules in the atmosphere. If the final state of the
atom is different from the initial state, the scattering is inelastic, and by conserva-
tion of energy the angular frequency @’ of the emitted radiation is given by

o' =w+(E,- E)lh
=0-w, 4.222)

This inelastic scattering process is called Raman scattering (or the Raman effect)
after C.V. Raman who discovered this effect experimentally in 1927. The theory
of both Rayleigh and Raman scattering may be developed in a straightforward way
by solving the coupled equations (4.32) to second order. If the dipole approximation
is made, the differential cross-section for the emission of a photon in the direction
(6, ¢) when the incident photon direction is along the Z axis is found to be
2
’3 m2 z (é’.Dbn)(é.Dna) + (é.Dbn)(é,'Dna) (4 223)
#i%e* [ W, — O @, + @’ ’

do
—(6, 9) = riow
dQ( 9)=r;

na

where
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is the classical radius of the electron. In (4.223), D; denotes the matrix element
of the electric dipole moment operator of the atom between the states i and j,
while £ and € are the polarisation vectors of the photons in the initial and final
states, respectively. The sum over n is over all possible intermediate states.

By the usual electric dipole selection rules the intermediate state n must be of
opposite parity to each of the states @ and b. Thus, in second order, scattering
does not change the parity of the atomic system, and the selection rules are, for a
one-electron atom [15],

Al=0,12 (4.225)

If the angular frequency of the incident radiation is such that o = ®,,, where
,, = (E, - E,)/h and E, is the energy of one of the intermediate states, then the
first term in the cross-section formula (4.223) becomes infinite. This is due to the
fact that in deriving the result (4.223) the width of the atomic energy levels has been
neglected. Taking the state a to be a stable ground state of zero width and replac-
ing E, by E, —iI',/2 where T, is the width of the level n, the correct behaviour of
the cross-section in the resonance region, in which o is close to ®,,, is found to be
2

(é"Dbn)(é'Dna)
,, —1i0,/(2h) - o

2
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do,,
—dg’; (6, 9) = riow (4.226)

The corresponding total cross-section o;,(®) is of Lorentzian form, being given by

2 1
6,,(0) = ron> 2 f &-D,) ED,)PdQ (4227
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In the elastic case, with @ = @” and E, = E,, the scattered light is known as
resonance radiation, while in the inelastic case (resonant Raman scattering), with
o # o and E, # E,, the scattered radiation is called resonance fluorescence. As
we have taken a to be the ground state, E, is necessarily greater than E,, so that
" < w and the fluorescence is of longer wavelength than the incident radiation.
Resonance radiation and resonance fluorescence are easily observed, for example
by shining a collimated beam from a sodium vapour lamp on sodium vapour
confined in a glass vessel.

Let us define 7, as the lifetime of the state n for decay into the state a and 7,
as the corresponding lifetime for decay from the state n to the state b. Partial
widths T, and T, can then be defined as T',, =#/t,, and I, = #i/1,,. If decay to the
states @ and b are the only decay modes of the state n, then the full natural width
I', is given by the sum of the partial widths:

r,=T,,+T,, (4.228)

In general, the state n will decay in additional ways, for example by collisions, and
the observed width I, will be larger than (T, + T,,).

[15] For a general atom the selection rules for second-order scattering are AJ = 0, +2, where J is the
total angular momentum quantum number, and the parity does not change.
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Making use of (4.170) and (4.180), the total cross-section in the resonance

region 0,,(®) can be written in the form
1 2

Ol ®) = = 8, —— Lonln (4.229)
27" e (0 - w,,) + T2/(4h%)

where g, is the degeneracy of the intermediate state n. The maximum of the
cross-section occurs at exact resonance (@ = @,,). For Rayleigh (elastic) scattering
(@” = w), it has the value

2 2
o = g, [wLJ [Y_—] (4.230)

while for resonant Raman scattering (@ # o), it is given by

2
- (wL} _Fblrfan (4231

na

By setting b = n in (4.181), and assuming that I',, and T, are similar in magnitude,
it is found that the absorption cross-section from the state a to the state n is of
the same order of magnitude as the resonant scattering cross-sections (4.230) and
(4.231). The cross-section for non-resonant Rayleigh scattering is smaller than
that for resonant Rayleigh scattering by a factor of up to 10" while that for
non-resonant Raman scattering is even smaller by a further factor of about 10°.
Nevertheless, Raman scattering is very important in the theory of rotational
molecular spectra; this will be discussed in Chapter 11.

Non-resonant elastic scattering in the low- and high-frequency limits

The cross-section for non-resonant Rayleigh (elastic) scattering given by (4.223)
can be written as
2

do m? ., R 20,,

d_Q(e’ 9) = r§w4h—2 zn‘,(e 'l'an)(ﬁ'l'm)w (4.232)
where, for a one-electron atom, D has been set equal to —er (see (4.72)).

We shall start by looking at the low-frequency limit of the cross-section for
scattering by the ground state of the atom, where the initial state a is an s state
with /, = 0. By the dipole selection rules all the intermediate states n must be p
states (1, = 1) with magnetic quantum numbers m, = 0, +1. It is convenient to take
the Z axis parallel to the unit vector &, which is in the direction of polarisation of
the incident radiation, so that

E X =2 (4.233)
From (4.117a) it is seen that z,, vanishes unless m, = 0. It follows that the only

non-vanishing component of r,, is z,, so that £"-r,, = £z, Since € is a unit vector
parallel to the Z axis, & = &’-€ and the cross-section (4.232) reduces to
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2

do m? ., . 20

— (8, 9)=rio*— (&' &) |zul —= (4.234)

dQ T one ( 2,,“ “ w2, - w?
where the sum is over all p states of the atom, including both discrete and con-
tinuum states.

In the low-frequency limit (@ < ®3,) where 7 is the p state of lowest energy, the
sum over n reduces to

(4.235)

_ | Zanl®
a=2e?y o __ (4.236)
é En - Ea

is a quantity known as the static dipole polarisability of the atom in the ground
state a.

From (4.234) and (4.235) the total cross-section for low-frequency scattering of
radiation by the ground state of a one-electron atom is

e2

_\2
Gy = [roma] * j (é'é) do (4.237)

To evaluate (4.237) it is easiest to take the polar axis parallel to €. Two cases
need to be considered, corresponding to the two independent possible polar-
isation directions of the scattered radiation: either £ = €’(1) where £(1) is in the
plane containing £ and k', or & = &'(2) where £'(2) is normal to the (¢, k") plane.
In the second case the cross-section vanishes since €-£(2) = 0. In the first case,
since k” and £'(1) must be at right angles to each other, we have

€ (1)-€=cos a=sin 6 (4.238)

where «is the angle between the vectors £ (1) and € and 6, the angle of scattering,
is the angle between k and k’. From (4.237) and (4.238), we have

_ 2
] o’ fsinze dQ

_ 2
_8m[ryma ) (4.239)
3| e?

The rapid increase of the scattering cross-section with ® at angular frequencies
o < w,, where 7 is the first excited p state, is a general feature, although the
formula (4.239) is specific to hydrogenic atoms. As a consequence, the scattering
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oblems

of sunlight by atmospheric atoms increases towards the high-frequency end of the
visible spectrum and is responsible for the blue appearance of the sky.

The second special case of the cross-section formula (4.232) is when @ is large
compared with ®,, for all important intermediate states #. In this limit

2
do a2 m
dQ(9a¢)_4r0[ﬁ]

Let us introduce axes so that & is parallel to the Z axis, with &’ lying in the XZ
plane. The sum over n is then given by

S (EFr)E )0, =€ X020+ € Y 12, 0, (4.241)
n o] n n

2

S (& 1,)(E b 0, (4.240)

n

Now z,, vanishes unless m, = m,, where m, and m, are the magnetic quantum num-
bers of the states n and a respectively. Similarly x,, vanishes unless m, = m, + 1.

_ It follows that the sum Y, X,,2,.®,, vanishes. The second sum in (4.241) can be

seen from (4.138) and (4.142) to be given by ,|2,,1°®,, = #/(2m). From (4.240)
the total scattering cross-section becomes

O =12 f £2dQ =12 f (#-8) dQ (4.242)

The integration over the angles in (4.242) is the same as in the previous case of
low-frequency scattering, so that

8n ,
O'zo:“—‘?’o

(4.243)

This result is independent of the initial state a, and hence can be applied to the
scattering of radiation by a free electron. This is called Thomson scattering. The
derivation which has been given here is non-relativistic and the cross-section
formula (4.243) ceases to be accurate when the energy of the incident photon 7@
becomes comparable with the rest energy of the target electron mc”. Both the low-
frequency limit of Rayleigh scattering and the high-frequency Thomson scattering
do not depend on Planck’s constant 4; these cross-sections were originally derived
using classical electromagnetic theory (see Jackson, 1998).

4.1 Calculate how many photons per second are radiated from a monochro-
matic source, 1 watt in power, for the following wavelengths: (a) 10 m (radio wave)
(b) 10 cm (microwave) (c) 5890 A (yellow sodium light) (d) 1 A (soft X-ray). At

- a distance of 10 m from the source, calculate the number of photons passing
~ through unit area, normal to the direction of propagation, per unit time and the

density of photons, in each case.
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4.2 (a) Establish the result (4.78) starting from equation (4.76).

(b) The full transition rate for spontaneous emission of a photon from an atom is
obtained in the dipole approximation from (4.79), by integrating over all
angles of emission and summing over two independent polarisation directions
€&

1 1
Wi = @3, [ dQ{[€,-D,,|* + 18, Dy, [
: 2nhc3(4n80] ,,'f (1€ Dy + 16D, )

Starting from this expression obta# the result (4.80).

4.3 Show that by performing the gauge transformation (4.89), one obtains
for the new wave function WV (r, r) the Schrodinger equation in the velocity gauge
(4.90).

4.4 Show that by performing the gauge transformation (4.92), one obtains for
the new wave function W'(r, 7) the Schrodinger equation in the length gauge (4.93).

4.5 Generalise the results of Section 4.4 to the case in which the level E,is
8. times degenerate and the level E, is g, times degenerate, and show that the
Einstein coefficients satisfy the relations

3
hw;,

i o

8aBsa = 8By Ap= B,
4.6 Obtain the explicit forms of the coefficients A(l, m; I, m’; q), either by

using a table of Clebsch-Gordan coefficients, or by using the recurrence relations
(4.121).

4.7 Show that

S 1Al m l, m'; m’ - m) = M
- 4m 20 +1

ifI”=1+1and

2 A, m; ', m's m” — m)P= X
“ 4n|20+1

if /=1 - 1. Find the transition rate for absorption of unpolarised isotropic radia-
tion by a hydrogenic atom from a level (nl) to the (20" + 1) degenerate levels (n'l’)
and show that it is independent of the magnetic quantum number of the initial
sublevel.

4.8 Prove that the average oscillator strengths defined by (4.143) obey the
Thomas-Reiche-Kuhn sum rule (4.137).

4.9 Prove the scaling law (4.148) for the lifetimes of the hydrogenic ions in the
- dipole approximation.
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410  For a given initial level a of a hydrogen atom, show that

2 Opa — Z,Gba = 2752766
b b

~ where 0, is the integrated absorption cross-section, in the electric dipole approxima-
tion, the sum Y, being over all states (including continuum states) with E, > E,,

~and &, is the corresponding cross-section for stimulated emission, the sum X;

~ being over all states with E, < E,. The quantity r, is the classical electron radius,
which is given by r, = e’/(4ne,mc?).




