Precision spectroscopy of atomic hydrogen and the proton charge radius puzzle

Why proton charge radius is so important?

- needed for accurate Rydberg constant determination

u

Hydrogen atomic levels

Schrödinger (atomic units):

 $E_{\mathsf{Bohr}} = -\frac{1}{n^2}$

QED:

$$E_{\text{QED}} = -\frac{1}{n^2} + \frac{3(2j+1) - 8n}{4(2j+1)n^4} \alpha^2 + \dots$$
$$= -\frac{1}{n^2} + a_2 \alpha^2 + a_4 \alpha^4 + a_{50} \alpha^5 + a_{51} \alpha^5 \ln(\alpha^{-2}) + \dots$$

recoil:

$$+\frac{m_r}{2(M+m_e)}[f(n,j)-1]^2 + \frac{(Z\alpha)^4 m_r^2}{2n^3 M^2} \left[\frac{1}{j+1/2} - \frac{1}{l+1/2}\right] (1-\delta_{l0})$$

nuclear size correction:

 $+\frac{2\pi(Z\alpha)}{3}\langle r_p^2\rangle|\psi(0)|^2$

Fundamental constants

$$E_n = R_{\infty} F\left(\alpha, m_e/M, \langle r_p^2 \rangle\right)$$

L _{1S}	self-energy	vacuum pol.	r _p	total
ер	8 383 MHz	-215 MHz	1.253 <mark>(50)</mark> MHz	8 172 MHz

Form-factor and charge radius

Form-factor is the Fourier transformation of the charge distribution

$$F(q^2) = \int \rho(\vec{x}) e^{i\vec{q}\cdot\vec{x}} d^3x$$

Mean proton charge radius

$$\rho(r) = \rho_0 e^{-r/r_0}, \qquad r_0 \approx 0.8 \text{ fm}$$

Since proton possesses anomalous magnetic moment :

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E_1^2 \sin^4 \frac{\theta}{2}} \frac{E_3}{E_1} \left\{ \left(F_1^2 - \frac{\kappa_p^2 q^2}{4m_p^2} F_2^2 \right) \cos^2 \frac{\theta}{2} - \frac{q^2}{2m_p^2} \left(F_1 + \kappa_p F_2 \right)^2 \sin^2 \frac{\theta}{2} \right\}$$

$$F_1$$
 – "Dirac" charge form-factor

$$F_2$$
 – "Anomalous" magnetic form-factor

 $\kappa_p = 1.79$

 $\mu_p = \frac{(1+\kappa_p)e}{2m}$

Electric and magnetic form-factors

e-p scattering results

Hydrogen spectroscopy

u

$E_n = \mathbf{R}_{\infty} F(\alpha, m_e/M, \langle \mathbf{r}_p^2 \rangle)$ Two unknowns \Rightarrow Two equations necessary!

Hydrogen spectroscopy: limitations

Precision spectroscopy in H:

- ALL levels except 2S promptly decay

$\gamma(3S) \Box \gamma(3P) \Box \gamma(4P) \Box 10 \text{ MHz}$

 Natural linewidth of Rydberg states reduces, but they become sensitive to electric fields (Stark effect)

$$\Delta E_{DC} \Box n^7$$

Scattered electric field at the level of 1V/m is hard to control!

Hydrogen spectroscopy: results

Dominating uncertainty results from spectroscopy of higher excited states (not 2S)

Muonic hydrogen µp

		Hydrogen	Muonic hydrogen
Bohr radius	ħ/mcα	50 pm	0.25 pm
Lyman-α	2^{2}	121 nm	2 keV
	$3mc^{-}\alpha^{-}/8$	(10 eV)	

L _{2S}	self-energy	vacuum pol.	rp	total
ер	1 085 MHz	-27 MHz	0.14 MHz	1 057 MHz
μρ	0.1 THz	-45 THz	0.93 THz	-49 THz

Spectroscopy of 2S-2P transition in μp

"prompt" ($t \sim 0$)

 μ^- stop in H₂ gas $\Rightarrow \mu p^*$ atoms formed ($n \sim 14$)

99%: cascade to μ p(1S), emitting prompt K_{α}, K_{β} ...

1%: long-lived μ p(2S) atoms lifetime $\tau_{2S} \approx 1 \mu$ s at 1 mbar H₂ R. Pohl *et. al.*, Phys. Rev. Lett. 97, 193402 (2006). "delayed" ($t \sim 1 \ \mu$ s)

fire laser ($\lambda \approx 6 \,\mu$ m, $\Delta E \approx 0.2 \,\text{eV}$)

 \Rightarrow induce μ p(2S) $\rightarrow \mu$ p(2P)

Transition line width 10 GHz Goal – uncertainty of 1 GHz (1999)

Target (H₂)

Resonance line 2S-2P in µp

Proton radius 2010

Where the problem resides ?!

-Errors in QED calculations are excluded at such level of discrepancy

proton polarizability aka. two-photon exchange

Seems to be the only contribution which *might* be able to solve the proton size puzzle by changing theory in μp .

Keep in mind:

```
Discrepancy: 0.31 meV
Polarizability: 0.015(4) meV 20 times smaller!
```

"New" physics?

Are

e-p scatteing experiments H spectroscopy results

flawless?

Hydrogen spectroscopy

Measurements of the 1S-2S transition

Fischer et. al, Phys. Rev. Lett. 92, 230802 (2004)

The Team

Hydrogen

Christian Parthey Arthur Matveev Janis Alnis Axel Beyer Nikolai Kolachevsky Randolf Pohl Thomas Udem Theodor Häncsh

Frequency comb

Tobias Wilken Birgitta Benhardt

Theory

Ulrich Jents Brett Altschul

Mobile fountain clock

Michel Abgrall Daniele Rovera Christophe Salomon Philippe Laurent

Optical fiber link

Katharina Predehl Stefan Droste Ronald Holzwarth Harald Schnatz Gesine Grosche Thomas Legero Stefan Weyers

Prof. T.W. Hänsch's group

Frequency Comb

III

& Menlo Systems

IIII

Hydrogen 1S

A. Beyer, Ph.D.

The team 2009-

T.W. Hänsch

Th. Udem

J. Alnis Post. Doc.

A. Matveev Post. Doc.

C. Partey Ph. D.

me

Experiment Overview

Setup

N. Kolachevsky et al., Opt. Lett. 36, 4299 (2011)

Master oscillator

$$\eta = \exp\left(-\varphi_{rms}^2
ight)$$
 at 972 nm
8-photon process => $\eta_{eff} = \eta_{IR}^{64}$

Beat note diode - dye laser

972 nm diode laser with a 20 cm long external resonator and intra-cavity EOM

FP1-FP2 Allan deviation

Comb-comb comparison setup

Comb-comb comparison: result

The Hydrogen spectrometer

1S-2S spectrometer

Setup

Uncertainty Budget

	uncertainty [Hz]	rel. uncertainty $[10^{-15}]$
statistics	6.3	2.6
2nd order Doppler effect	5.1	2.0
line shape model	5.0	2.0
quadratic ac Stark shift (243 nm)	2.0	0.8
ac Stark shift, 486 nm quench light	2.0	0.8
hyperfine correction	1.7	0.69
dc Stark effect	1.0	0.4
ac Stark shift, 486 nm scattered light	1.0	0.4
Zeeman shift	0.93	0.38
pressure shift	0.5	0.2
blackbody radiation shift	0.3	0.12
power modulation AOM chirp	0.3	0.11
rf discharge ac Stark shift	0.03	0.012
higher order modes	0.03	0.012
line pulling by $m_F = 0$ component	0.004	0.0016
recoil shift	0.009	0.0036
FOM	2.0	0.81
gravitational red shift	0.04	0.077
total	10.4	4.2

Uncertainty Budget

	uncertainty [Hz]	rel. uncertainty $[10^{-15}]$
statistics	6.3	2.6
2nd order Doppler effect	5.1	2.0
line shape model	5.0	2.0
quadratic ac Stark shift (243 nm)	2.0	0.8
ac Stark shift, 486 nm quench light	2.0	0.8
hyperfine correction	1.7	0.69
dc Stark effect	1.0	0.4
ac Stark shift, 486 nm scattered light	1.0	0.4
Zeeman shift	0.93	0.38
pressure shift	0.5	0.2
blackbody radiation shift	0.3	0.12
power modulation AOM chirp	0.3	0.11
rf discharge ac Stark shift	0.03	0.012
higher order modes	0.03	0.012
line pulling by $m_F = 0$ component	0.004	0.0016
recoil shift	0.009	0.0036
FOM	2.0	0.81
gravitational red shift	0.04	0.077
total	10.4	4.2

Second Order Doppler Effect

$$\Delta f_{\rm dp} = -v^2/(2c^2) \cdot f 1S - 2S$$

Result

Zeeman Shift

$$\Delta f(m_F = \pm 1) = \pm B \cdot 36 \,\mathrm{Hz/G}$$
$$B = 5G$$

Differential measurement: 30 winding 100 windings $I \rightarrow \pm I$

Zeeman Shift

 $5.8 \,\mathrm{Hz}/6.25 = 0.93 \,\mathrm{Hz} \quad (0.38 \times 10^{-15})$

Result

C.G. Parthey et al., PRL 107, 203001 (2011)

2466061413187035(10)Hz

 4.2×10^{-15}

C.G. Parthey et al., PRL 107, 203001 (2011)

$187\,035(10)\,{ m Hz}$

 4.2×10^{-15}

C.G. Parthey et al., PRL 107, 203001 (2011)

900 km Optical Fiber Link to PTB

New detector

New Detector

Result - Link Measurement

Uncertainly in the 1S-2S transition cannot solve the proton charge radius puzzle

2466061413187035(10)Hz

 4.2×10^{-15}

Parthey et al., arXiv:1107.3101v1

It is desirable to measure independently other transitions in H with higher accuracy

We already use a laser to excite 2S-4P (486 nm) transition in a cold atomic beam of H

2S-4P transition measurements (Yale'95)

2S-4P spectroscopy at MPQ

Cold beam of metastable atoms (4 K)

Optically populated only one hyperfine sublevel 2S (F=0)

Velocity selective detection, typical velocities down to 100 m/s

Frequency measurement is reliable

2S-4P experimental setup

Antiparallel Beams

Active fiber-based retroreflector:

Inside the chamber

Gaussian beam

Assembly of spherical lenses

Aspherical lens

Data evaluation

Data scattering (polarization dependent?)

Cross damping: coherent and incoherent parts

$$\vec{d}(t) = \vec{d}_1 e^{i\omega_1 t - \Gamma_1/2t} + \vec{d}_2 e^{i\omega_2 t - \Gamma_2/2t + i\varphi}$$

$$\left| \vec{\tilde{d}}(\omega) \right|^{2} = \left| \frac{\vec{d_{1}}}{i(\omega - \omega_{1}) + \Gamma_{1}/2} + \frac{\vec{d_{2}}e^{i\varphi}}{i(\omega - \omega_{2}) + \Gamma_{2}/2} \right|^{2}$$
(3)

$$= \underbrace{\frac{|\vec{d_{1}}|^{2}}{(\omega - \omega_{1})^{2} + (\Gamma_{1}/2)^{2}} + \frac{|\vec{d_{2}}|^{2}}{(\omega - \omega_{2})^{2} + (\Gamma_{2}/2)^{2}}}_{\text{incoherent}} + \underbrace{\vec{d_{1}} \cdot \vec{d_{2}} \frac{\cos(\varphi) \left[\Gamma_{1}\Gamma_{2}/2 + 2(\omega - \omega_{1})(\omega - \omega_{2}) \right] + \sin(\varphi) \left[(\omega - \omega_{1})\Gamma_{2} - (\omega - \omega_{2})\Gamma_{1} \right]}{[(\omega - \omega_{1})^{2} + (\Gamma_{1}/2)^{2}\right] \left[(\omega - \omega_{2})^{2} + (\Gamma_{2}/2)^{2} \right]}_{\text{coherent}}$$

$$= \underbrace{\vec{d_{1}} \cdot \vec{d_{2}} \frac{\cos(\varphi) \left[\Gamma_{1}\Gamma_{2}/2 + 2(\omega - \omega_{1})(\omega - \omega_{2}) \right] + \sin(\varphi) \left[(\omega - \omega_{1})\Gamma_{2} - (\omega - \omega_{2})\Gamma_{1} \right]}{[(\omega - \omega_{1})^{2} + (\Gamma_{1}/2)^{2}\right] \left[(\omega - \omega_{2})^{2} + (\Gamma_{2}/2)^{2} \right]}_{\text{coherent}}$$

$$= \underbrace{\vec{d_{1}} \cdot \vec{d_{2}} \frac{\cos(\varphi) \left[\Gamma_{1}\Gamma_{2}/2 + 2(\omega - \omega_{1})(\omega - \omega_{2}) \right] + \sin(\varphi) \left[(\omega - \omega_{1})\Gamma_{2} - (\omega - \omega_{2})\Gamma_{1} \right]}{[(\omega - \omega_{1})^{2} + (\Gamma_{1}/2)^{2}\right] \left[(\omega - \omega_{2})^{2} + (\Gamma_{2}/2)^{2} \right]}_{\text{coherent}}$$

Cross damping problem in the 2S-4P experiment

Simple rule: if one wants to split the line by the factor of N, the perturbing line should be further away as $N\gamma$

Analysis of systematic effects is still in progress

Thank you for attention!

E-Mail: postmaster@lebedev.ru

