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Lecture 1: Introduction

Frequency and time as most accurately measured quantities in physics. Clocks:
from 17th century till today. Mechanical, radiofrequency, microwave and opti-
cal oscillators. Accuracy and stability. Phase and amplitude modulation, their
mathematical representation and power spectrum.

1.1 Frequency and time as most accurately

measured quantities in physics

Figure 1.1: Typical frequencies of different oscillator types.

From all known physical quantities, frequency can be measured with the
highest accuracy. Today, the accuracy of the frequency measurements reached
a few parts in 1018. If someone wants to measure a physical quantity with high
accuracy, it is necessary to covert this quantity in frequency.

Examples:
- road radars convert velocity into frequency (the Doppler effect)
- medical tomograph maps the spatial distribution of water containing tissues
into frequency spectrum (Nuclear Magnetic Resonance)
- highly accurate measurements of voltages use the Josephson effect: the os-
cillation frequency from the Josephson junction depends on the potential dif-
ference as UDC = n h̄

2e
ω.

For many applications in our life, technology, navigation and fundamental
physics stable frequency sources are extremely important. Humans used clocks
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from the very beginning of civilization.
First clocks were based on periodicity of day and night and changing sea-

sons. It is directly connected to the rotation of astronomical bodies - Earth,
Moon and planets. The rotation period of the Earth around its axis (day),
Moon around the Earth (month) and Earth around the Sun (year) were taken
as natural units of time. One needs the time scale and the unit of time to
discuss events happening our life.

Today the tropical year consists of 365.2422 days and the synodic month –
of 29.5306 days. Today’s calender bases on Julian (roman) calender accepted
in 45 B.C.: the year consists of 365 days, while each 4th year consists of 366
days. The calender was slightly modified in 1582 by pope Gregory. According
to this calender the year consists of 365.2425 days which is very close to true
number (365.2422 days).

1.2 Clocks: from 17th century till today.

Figure 1.2: Development of clocks over last centuries.

1.2.1 Mechanical clocks

In mechanical clocks the mechanism plays a dual role. It should measure and
indicate the frequency of the oscillating system. In addition, it should provide
energy to compensate for the losses in the system. It should not influence the
frequency of the oscillator! First tower clocks had an accuracy of 15 minutes
in a day or ∆T/T = ∆ν/ν ≈ 10−2.
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Later Galileo Galilei (1564-1642) discovered, that the oscillating period of
the pendulum does not depend on amplitude if it is small. He tired to compete
in getting prize for “finding the latitude” which was extremely important issue
for long-range navigation in the middle of 17th century. Still, first working
pendulum clocks were manufactured in 1656 by Chrisitan Huygens. Clocks
were accurate to about 10 seconds ∆T/T ≈ 10−4. Significant improvement
was introduced by George Graham in 1721 who compensated the temperature
instability of the pendulum frequency ∆T/T ≈ 10−5. Significant breakthrough
in the navigation was made by George Harrison (1761) who invented a marine
chronometer. The accuracy was 0.2 seconds per day already! ∆T/T ≈ 10−6.

Till the early XX century, elaborated mechanical clocks were used in the
metrological insinuates. The best mechanical clocks provided instability of
∆T/T ≈ 2× 10−8 (William Shortt).

1.2.2 Quartz clocks

The beginning of quartz clock era was around 1930. Frequency of quartz os-
cillator is defined by the piezo-electric oscillations of the elastic quartz crystal.
Typical range 100kHz - 10 MHz. Typical frequency drift is 1 ms per day,
∆T/T ≈ 10−8. Till 1935 calibration of any clock was done by accurate mea-
surements of astronomical (sun) time.

Later, in 1935 by monitoring the frequency of 3 quartz clock it was shown
that the rotation period of the Earth changes (Earth typically decelerates).

Tidal changes of the day duration can be monitored in the past by the coral
growth. Depending on the season, carbonate concentration in water changes
with its temperature and corals structure consists of year rings (like a wood).
It was shown that around 135 millon years ago (Jurassic period) the year
consisted of 377 days.

1.2.3 Microwave atomic clocks

The main difference between all previous clocks and atomic clocks is that the
oscillations there result not from mechanical oscillations of the solid body, but
from atomic population oscillations between atomic energy levels. One of the
first ideas to use atoms in clocks was given by Isidor Rabi (Nobel Prize, 1944).
Cs atomic clocks appeared in the period 1944-1955. There were based on
the ideas of Norman Ramsey to excite atoms in spatially separated fields to
get narrow unperturbed resonance lines. First commercial Cs clocks – 1958.
Development of Cs atomic clocks resulted in re-definition of the second: the
duration of 9 192 631 770 periods of the radiation corresponding to the transi-
tion between the two hyperfine levels of the ground state of the caesium 133
atom. (CGPM conference, 1967).

The uncertainly of the best beam Cs atomic clock is around ∆T/T ≈ 10−14.
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Next generation of microwave Cs atomic clocks - “Cs fountain clocks”.
Atoms are laser cooled and set to ballistic flight for 1 s. It results in spectral
line width of the atomic resonance line of 1 Hz. The typical uncertainty is
∆T/T ≈ 10−15, the best performance ∆T/T = 2− 3× 10−16.

1.2.4 Optical clocks

We see, that improving the stability of the clocks was connected with increasing
the carrier frequency ν0. The higher the frequency, the higher the stability.
Why?

The resonance quality factor is given by

Q = ν0/∆ν , (1.1)

where ν0 is the carrier frequency and ∆ν is the resonance spectral width. The
higher ν0, the higher the Q-factor, the higher the stability.

• mechanical: ν0 ∼ 1Hz

• quartz: ν0 ∼ 107Hz

• microwave: ν0 ∼ 1010Hz

Further? Optical! ν0 ∼ 1015Hz. The resonance line width can still
reach small numbers ∆ν ∼ 1Hz, so the Q-factor reaches 1015. What are the
advantages?

First, the resonance is narrower and the stability is higher.
Second, if one wants to see the discrepancy between two clocks the faster

clocks show it faster. Example: two mechanical clocks, one is slower for 1
second in a year (10−8). To see the difference of half a period (π), one needs
to wait half a year. For quartz oscillator with ν0 = 108Hz one needs only half
a second!

Best today’s clocks:

• lattice clocks on ultra-cold laser-cooled atoms (Sr, Yb, Hg): fractional
uncertainty 10−17.

• ion clocks on laser cooled single ions (Al+, Sr+, Yb+, Hg+): fractional
uncertainty 5× 10−18.

Future projects: atomic clocks based on nuclear optical transitions. Can-
didate 229Th with isomeric transition between two nuclear states. Proposed
Q-factor is around Q ∼ 1020. The transition is not yet detected!
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Figure 1.3: Atomic clock schematics.

1.2.5 Accuracy and stability: definition

Frequency is a physical value which fluctuates. To build a good source the
frequency should be stable in time. But such a source is not necessarily gives
a reproducible value. A high-quality frequency standard should produce (i)
highly stable frequency and (ii) this frequency should be known in absolute
units (hertz).

Definitions:

• “Stability” – frequency of the oscillator is stable in time

• “Accuracy” – frequency of the oscillator is reproducible and can be mea-
sured in hertz

Good sources: HIGH stability and HIGH accuracy (big numbers) or LOW
instability and LOW accuracy (small numbers)

Accuracy of the source cannot be higher than the accuracy of the best
primary standards (Cs fountain clock)

If one invents a new oscillator with a superior stability (e.g. optical clocks)
better than the primary standard, than one can compare two identical sources
to check for reproducibility. It can be later acknowledged as a new definition
of the second.

1.3 Oscillator. Amplitude and Phase modula-

tion

1.3.1 Harmonic oscillator

Harmonic oscillator is described by the equation

U(t) = U0 cos(ω0t+ ϕ) . (1.2)
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Figure 1.4: Accuracy and stability. a) Accurate and stable signal. b) Accurate
and unstable signal. c) Stable, but not accurate signal.

with the amplitude U0, frequency

ν0 =
ω0

2π
(1.3)

and initial phase ϕ.
Let us generalize the equation for harmonic oscillations introducing varying

phase and amplitude:

U(t) = U0(t) cosφ(t) = [U0 +∆U0(t)] cos[ω0t+ ϕ(t)]. (1.4)

instant frequency equals

ν(t) ≡ 1

2π

dφ(t)

dt
=

1

2π

d

dt
[2πν0t+ ϕ(t)] = ν0 +

1

2π

dϕ(t)

dt
(1.5)

which differs from the frequency of the ideal oscillator ν0 by

∆ν(t) ≡ 1

2π

dϕ(t)

dt
. (1.6)

1.3.2 Damped oscillations

Damped oscillations are described by the formula

U(t) = U0 e
−Γ

2
t cosω0t , (1.7)

where Γ is the damping constant. It is defined by the energy losses of the oscil-
lator per unit time dW (t) = −ΓW (t) dt. The spectrum of damping oscillations
is given by Fourier transformation

A(ω) =

∫ ∞

0

U0 e
−Γ

2
t cos(ω0t) e

−iωt dt , (1.8)
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Figure 1.5: Spectrum of damped oscillations.

which will give

A(ω) =
U0

2

−i(ω − ω0) +
Γ
2

[i(ω − ω0) +
Γ
2
][−i(ω − ω0) +

Γ
2
]
=
U0

2

−i(ω − ω0) +
Γ
2

(ω − ω0)2 + (Γ
2
)2
. (1.9)

The spectral function is a complex value with the real and imaginary parts
given as the following:

ℜA(ω) =
U0

2

Γ
2

(ω − ω0)2 + (Γ
2
)2

ℑA(ω) = −U0

2

ω − ω0

(ω − ω0)2 + (Γ
2
)2
, (1.10)

while the power spectrum is P (ω) ∝ A(ω)A∗(ω) = [ℜA(ω)]2 + [ℑA(ω)]2

P (ω) ∝ U2
0

4

(ω − ω0)
2 + (Γ

2
)2

[(ω − ω0)2 + (Γ
2
)2]2

=
U2
0

4

1

(ω − ω0)2 + (Γ
2
)2
. (1.11)

This is the LORENTZIAN function. Full Width On the Half Maximum
(FWHM) equals

∆ωFWHM = Γ . (1.12)

Very similar to the uncertainty relation

∆E∆t ≥ h̄

2
. (1.13)

Quality factor:

Q ≡ ω0W

−dW/dt
. (1.14)

Since W ∝ U(t)2 = U2
0/2 exp(−Γt) and dW/dt ∝ −ΓU2

0/2 exp(−Γt), which
gives

Q =
ω0

Γ
=

ω0

∆ω
. (1.15)
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Figure 1.6: Amplitude modulated signal and is spectrum.

1.3.3 Harmonic amplitude modulation

UAM(t) = (U0 +∆U0 cosωmt) cosω0t

= U0(1 +M cosωmt) cosω0t , (1.16)

where

M ≡ ∆U0

U0

(1.17)

calls the index of the amplitude modulation. Rewriting the formula (1.16) we
will get

UAM(t) = U0

[
cosω0t+

M

2
cos(ω0 + ωm)t+

M

2
cos(ω0 − ωm)t

]
. (1.18)

which indicates that the spectrum of amplitude modulated signal consists of
three components at the frequencies ω0 (carrier) and ω0 ± ωm (sidebands).

Exercise 1: The laser radiation with amplitude modulated signal at the
frequency ωm and the modulation index M is focused on the photodiode.
The spectrum analyzed connected to the photodiode records the signal at the
frequency ωm. What will be the amplitude of this signal?
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Figure 1.7: Phase plane representation of an amplitude modulated signal.

Solution: The photodiode detects the power of the amplitude modulated
signal

PAM ∝ U0

[
eiω0t +

M

2
ei(ω0+ωm)t +

M

2
ei(ω0−ωm)t

]
× U∗

0

[
e−iω0t +

M

2
e−i(ω0+ωm)t +

M

2
e−i(ω0−ωm)t

]
= |U0|2

[
1 + 2

M

2
e−iωmt + 2

M

2
eiωmt + 2

M2

4
+ 2

M2

4
e2iωmt + 2

M2

4
e−2iωmt

]
= |U0|2

[
1 +

M2

2
+ 2M cosωmt+

M2

2
cos(2ωmt)

]
. (1.19)

the spectrum analyzer will detect the signal at the frequency ωm with the
amplitude ASA ∝ |U0|2M .

1.3.4 Harmonic phase modulation

Phase modulated oscillations are described by the expression

UPM(t) = U0 cosφ = U0 cos(ω0t+ δ cosωmt) . (1.20)

Index of phase modulation δ gives the maximal deviation of the phase (hub).
The frequency ωm is the modulation frequency. The instant frequency

ω(t) = ω0 − ωmδ sinωmt ≡ ω0 −∆ω sinωmt . (1.21)

Phase and frequency modulation are closely connected and are basically have
the same physics. The expression “phase modulation” is used when the coef-
ficient δ does not depend on the modulation frequency ωm. In this case the
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Figure 1.8: Phase modulated signal.

frequency deviation ∆ω linearly depends on modulation frequency ωm. The
expression “frequency modulation” is used when the deviation ωm is constant
and the phase deviation δ is reversely proportional to ωm.

Rewriting the expression into complex form

UPM(t) = U0 cos(ω0t+ δ cosωmt)

= U0ℜ{exp(iω0t) exp(iδ cosωmt)} . (1.22)

We expand the exponent into Teylor series

exp[iδ cos(ωmt)]

= 1 + iδ cos(ωmt)

+ i2
1

2!
δ2
1

2
[1 + cos(2ωmt)]

+ i3
1

3!
δ3
1

4
[3 cos(ωmt) + cos(3ωmt)]

+ i4
1

4!
δ4
1

8
[3 + 4 cos(2ωmt) + cos(4ωmt)]

+ i5
1

5!
δ5

1

16
[10 cos(ωmt) + 5 cos(3ωmt) + cos(5ωmt)]

+ i6
1

6!
δ6

1

32
[10 + 15 cos(2ωmt) + 6 cos(4ωmt) + cos(6ωmt)]

+ i7
1

7!
δ7

1

64
[35 cos(ωmt) + 21 cos(3ωmt) + 7 cos(5ωmt) + cos(7ωmt)]

+ · · · .

and after re-grouping we get

exp[iδ cos(ωmt)] = J0(δ) + 2 i J1(δ) cos(ωmt) + 2 i2 J2(δ) cos(2ωmt) (1.23)

+ · · ·+ 2 in Jn(δ) cos(nωmt) · · · ,
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Figure 1.9: Bessel functions.

where Jn are the Bessel functions:

J0(δ) = 1−
(
δ

2

)2

+
1

4

(
δ

2

)4

− 1

36

(
δ

2

)6

+ · · · (1.24)

J1(δ) =

(
δ

2

)
− 1

2

(
δ

2

)3

+
1

12

(
δ

2

)5

− · · ·

J2(δ) =
1

2

(
δ

2

)2

− 1

6

(
δ

2

)4

+
1

48

(
δ

2

)6

− · · ·

J3(δ) =
1

6

(
δ

2

)3

+
1

24

(
δ

2

)5

+
1

240

(
δ

2

)7

− · · ·

At the end we will get

UPM(t) = U0

∞∑
n=−∞

ℜ{(i)nJn(δ) exp[i(ω0 + nωm) t]} . (1.25)

Negative order Bessel functions can be calculated as

J−n = (−1)nJn . (1.26)

Explicitly, it will result in

UPM(t) = U0ℜ{J0(δ) exp(iω0t) (1.27)

+ iJ1(δ)[exp i(ω0t+ ωmt) + exp i(ω0t− ωmt)]

− J2(δ)[exp i(ω0t+ 2ωmt) + exp i(ω0t− 2ωmt)]

− iJ3(δ)[exp i(ω0t+ 3ωmt) + exp i(ω0t− 3ωmt)]

+ iJ4(δ)[exp i(ω0t+ 4ωmt) + exp i(ω0t− 4ωmt)]

+ i · · · }
= U0{J0(δ) cosω0t

− J1(δ) sin(ω0t+ ωmt)− J1(δ) sin(ω0t− ωmt)

− J2(δ) sin(ω0t+ 2ωmt)− J2(δ) sin(ω0t− 2ωmt)

+ J3(δ) sin(ω0t+ 3ωmt) + J3(δ) sin(ω0t− 3ωmt)

+ J4(δ) sin(ω0t+ 4ωmt) + J4(δ) sin(ω0t− 4ωmt)

− · · · } ,
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Figure 1.10: Phase plane representation of a phase modulated signal.

One can see that the spectrum of phase modulated signal consists of a central
frequency ω0 and an infinite number of sidebands ω0 ± nωm. The spectrum
significantly differs from the spectrum of amplitude modulation.

Contribution of higher-order Bessel functions is significant if the modula-
tion index is δ > 1. Roughly, the number of strong sidebands is given by the
coefficient δ (e.g. if δ = 8, there will be 8 strong sidebands).

Exercise 2: The laser radiation with pase modulated signal at the frequency
ωm and the modulation index δ is focused on the photodiode. The spectrum
analyzed connected to the photodiode records the signal at the frequency ωm.
What will be the amplitude of this signal?

Solution: The photodiode detects the power of the amplitude modulated
signal

PPM ∝ UPM × U∗
PM ≈

U2
0{J0(δ) exp(iω0t) + iJ1(δ) exp i(ω0t+ ωmt) + iJ1(δ) exp i(ω0t− ωmt)} ×

{J0(δ) exp(−iω0t)− iJ1(δ) exp −i(ω0t+ ωmt)− iJ1(δ) exp −i(ω0t− ωmt)}
(1.28)



17

Focussing only on the terms at the modulation frequency +ωm we will get

ASA(ωm) ∝ −iJ0J1 exp(iω0t) exp(−iω0t) exp(iωmt) +

iJ0J1 exp(−iω0t) exp(iω0t) exp(iωmt) =

0

(1.29)

The spectrum analyzer will detect the signal at the frequency ωm with
ZERO amplitude. It results from the fact that the sidebands have different
phases. Compare to result of the Exercise 1.



Lecture 2: Amplitude and phase
fluctuations

Mathematical description of stochastic processes, distribution function, mean
value, dispersion. Allan deviation. Correlated fluctuations. Autocorrelation
function. Spectral density. Wiener-Khinchin theorem. Stochastic processes in
physical systems. From spectral representation of fluctuations to time repre-
sentation. Spectral density and Allan deviation of different fluctuation types.

2.1 Mathematical description of stochastic pro-

cesses, distribution function, mean value,

dispersion.

Output frequency even of the best frequency synthesizers is not constant, but
fluctuates in time. For example, harmonic amplitude and phase modulation
change the output frequency. In real life perturbations have a stochastical na-
ture and should be described in a corresponding framework. The fluctuations
can be introduced mathematically as following

U(t) = [U0 +∆U(t)] cos(2πν0t+ ϕ(t)) . (2.1)

where ∆U(t) is the stochastic fluctuations of amplitude and ϕ(t) stands for the
phase fluctuations. For comparison of different sources oscillating at different
frequencies let us introduce normalized phase

x(t) ≡ ϕ(t)

2πν0
, (2.2)

and frequency fluctuations

y(t) ≡ ∆ν(t)

ν0
=
dx(t)

dt
. (2.3)

Let us then consider some value y(t) fluctuating in time. In physical ex-
periment we always use discretisation, reading the value by some device (the
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latter expression is usual for frequency measurement devices)

ȳi =
1

τ

∫ ti+τ

ti

y(t)dt . (2.4)

so we get a set of randomly distributed numbers with some distribution func-
tion which will depend on the stochastic process nature.

We can calculate the average value

ȳ =
1

N

N∑
i=1

yi (2.5)

and the dispersion

S2
y =

1

N − 1

N∑
i=1

(yi − ȳ)2 =
1

N − 1

 N∑
i=1

y2i −
1

N − 1

(
N∑
i=1

yi

)2
 . (2.6)

The width of the distribution will be given by a dispersion

sȳ =
sy√
N
. (2.7)

If the process is stationary (both ȳ and sȳ do not depend on time) than accord-
ing to the central theorem, the distribution will approach Gaussian distribution
if T → ∞.

p(y) =
1

σ
√
2π

exp

(
−(y − ȳ)2

2σ2

)
, (2.8)

The stochastic process is characterized by the expectation value (mean value)

⟨y⟩ =
∫ ∞

−∞
yp(y) dy (2.9)

and the dispersion

σ2 =

∫ ∞

−∞
(y − ⟨y⟩)2p(y) dy . (2.10)

The latter can be rewritten as

σ2 = ⟨(y − ⟨y⟩)2⟩ = ⟨y2⟩ − ⟨y2⟩ . (2.11)

In real experiment we can only evaluate expectation value and the dispersion.
Expectation and the dispersion can be also evaluated from the measurement
results on the ensemble of devices. Typically it is impossible. But, for a
stationary process the result should not depend on whether one picks up values
from an ensemble of the the devices of from a time realization of one of one of



20

Figure 2.1: Illustration to deriving of the dispersion. a) Recorded signal. b)
Digitized signal. c) Averaged signal over intervals τ .d) Histogram. e) its
approximation by Gaussian function.

them. These processes are called ergodic processes. Very often for modelling
some processes one uses the assumptions about stationarity and ergodicity
implicitly, but one has to be quite accurate doing it. For example, if noise
grows continuously in time than the process is not stationary any more.

Another important issue is the possible existence of correlations. If fluctu-
ating values are not completely independent, it will result in correlations. If
two sets of values, e.g. xi and yi are correlated, the plot xi(yi) will not be sym-
metrical. If it is one realization of parameters, the correlation may appear as
the fact that the different subsets will have different, statistically inconsistent
mean values and dispersion.

2.2 Allan deviation.

To adequately numerically describe a stochastic process in presence of corre-
lations it is possible to use a so-called N-point dispersion. For that one has to
take N measurements of duration τ each. In principle, there can be a “dead”
time interval between the measurements of duration T − τ . The period of the
measurement is thus equals to T . The N -point dispersion is thus equals to

σ2(N, T, τ) =
1

N − 1

N∑
i=1

(
ȳi −

1

N

N∑
j=1

ȳj

)2

. (2.12)

It is usually accepted to use dispersion with N = 2 and T = τ according
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Figure 2.2: Measurement sequence for Allan deviation.

to suggestion of Dave Allan. It is so-called Allan deviation which is usually
denoted as σ2

y(2, τ) or σ
2
y(τ)

σ2
y(τ) =

⟨
2∑

i=1

(
ȳi −

1

2

2∑
j=1

ȳj

)2⟩
=

1

2
⟨(ȳ2 − ȳ1)

2⟩ . (2.13)

It is based on the measurement of the differences of the neighboring measure-
ments and not on the deviation from the mean value as in the case of the
regular dispersion. The square root of the Allan dispersion is called as Allan
deviation.

The Allan deviation for the phase is given as

σ2
y(τ) =

1

2τ 2
⟨
(x̄i+2 − 2x̄i+1 + x̄i)

2
⟩
. (2.14)

since

ȳi =
x̄i+1 − x̄i

τ
. (2.15)

Practical definition of Allan dispersion

To measure the frequency of some oscillator “1” and, correspondingly, its Allan
deviation one has to compare the frequency of this oscillator with some other
one (“2”), preferably, much more stable. In general, we can measure only the
frequency ratio, taking one of the signals as an etalon one.

To measure the Allan dispersion one has to do the following

• measure the frequency of of the oscillator “1” compared to “2”

• the counter should operate in so-called Π-mode without a dead time
(τ = T )

• calculate differences of the neighboring readings νi and νi+1, square it
and divide by 2

It takes a lot of time to measure the Allan deviation for a set of different
time intervals τ . Typically, for saving time the measurement is done by the
following procedure:
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• one measures the set of νi for the minimal time interval τmin which
counter can provide (without a dead time!)

• calculation of the Allan deviation for the minimal time σy(τmin) is given
by a standard procedure described above

• one can calculate Allan deviation for nτmin using the same dataset, n is
the integer number. Corresponding frequency is obtained by averaging
corresponding n neighboring frequency readings. E.g. for n = 3. τ =
3τmin, ȳ1,τ = (ȳ1,τmin

+ ȳ2,τmin
+ ȳ3,τmin

)/3, ȳ2,τ = (ȳ2,τmin
+ ȳ3,τmin

+
ȳ4,τmin

)/3, ȳ3,τ = . . ..

If one of the oscillators is much more stable than the other one, than the
measurement will give the stability of studied oscillator “1”. Another case
which is easy to interpret is when one compares two identical oscillators. In
that case the Allan dispersion of one of the oscillators will be given as

σ2
y,tot(τ) = σ2

y,1(τ) + σ2
y,2(τ) and

σy,1(τ) = σy,2(τ) =
1√
2
σy,tot(τ). (2.16)

Allan deviation is a very useful measure of an oscillator stability which allows
to characterize the stability depending on the observation time. For example,
frequency-stabilized lasers possess a short time stability of σy ≤ 5 × 10−16 on
the time intervals of 1 - 100 s. For longer time intervals the Allan deviation
grows due to frequency drifts. For time intervals 1000 - 10000 s hydrogen maser
offers better stability and lower Allan deviation of σy ≤ 1 × 10−15. One can
also distinguish different dependencies for Allan deviation σy(τ) which depend
on the dominating noise type. We will discuss it laser.

As an example let us first consider some deterministic frequency changes.

Exercise 3: Allan deviation for a linear frequency drift Consider an
oscillator which frequency linearly changes in time y(t) = at, where a is the
drift rate. Calculate the Allan deviation.

Since ȳ1 = [at0+a(t0+ τ)]/2 and ȳ2 = [a(t0+ τ)+a(t0+2τ)]/2 we will get

σy(τ) =
⟨
aτ/

√
2
⟩
=

a√
2
τ . (2.17)

Hence, linear frequency drift of an oscillator results in the Allan deviation
linearly depending on averaging time τ .
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Figure 2.3: a) Uncorrelated data. b) Correlated data.

Exercise 4: Allan deviation for a frequency modulated signal Con-
sider an oscillator with a frequency modulated output

y(t) =
δν0
ν0

sin(2πfmt) , (2.18)

where fm is the modulation frequency .
After straightforward calculations we will get

σy(τ) =
δν0
ν0

sin2(πfmτ)

πfmτ
. (2.19)

We see that the Allan deviation results in zero for τ = 1/fm, i.e time τ is
the multiple of the modulation period 1/fm and the influence of modulation
becomes zero after averaging over a period. Deviation reaches maximum for
τ ≈ n/(2fm), where n is an integer even number.

2.2.1 Correlated fluctuations

The most simple way to find correlations in experimental data is to plot each
measured value as a function of previous one. If the data are correlated, e.g.
following the simplest model

yk+1 = αyk + ϵ , (2.20)

where the fluctuating value y has a pure statistical contribution ϵ. Besides
that the value yk+1 partly depends on the previous value yk. The correlation
coefficient is 0 ≤ α ≤ 1. For α = 0 the function yk+1(yk) is homogeneously
distributed over all for quadrants and correlation is absent. If α > 0 the
correlation will appear as changing the shape of the cloud towards 1s and 3rd
quadrants. We will discuss methods which are used for statistical evaluation
of the experimental data.
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Usually, the fluctuating signal B(t) (e.g. y(t), U(t) or Φ(t)) is represented
as a sum of purely fluctuating contribution b(t) and the average value B(t):

B(t) = b(t) +B(t) . (2.21)

The autocorrelation function is given by

Rb(τ) = b(t+ τ)b(t) = lim
T→∞

1

2T

∫ T

−T

b(t+ τ)b(t) dt . (2.22)

If fluctuations are completely independent, the average value b(t+ τ)b(t) is 0
for any τ > 0. For any stationary process Rb(−τ) = Rb(τ). It is clear that

Rb(τ = 0) = σ2
b (2.23)

for ⟨B⟩2 = 0.Usually for very large τ correlations are completely lost and
Rb(τ) → 0 for τ → ∞.

We have shown previously, that the Fourier transformation of some function
will give its frequency spectrum. For a fluctuating value the function U(t) is
not defined, but the function Rb(τ) is well defined.

Let us assume b(t) = F(a(ω)), where the function a(ω) will be discussed
later.

Rb(τ) = lim
T→∞

1

2T

∫ T

−T

1

(2π)2

∫ ∞

−∞
a(ω)eiω(t+τ) dω

∫ ∞

−∞
a(ω′)eiω

′t dω′dt

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[
lim
T→∞

1

2T

∫ T

−T

eit(ω+ω′) dt

]
a(ω)a(ω′)eiωτ dω′dω ,

(2.24)

the order of integration was changed in the second raw. In the limit T → ∞
expression in the square brackets is the Dirac delta function, hence

Rb(τ) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
a(ω)a(ω′)eiωτδ(ω + ω′) dω′dω

=

∫ ∞

−∞

|a(ω)a(ω)|
2π

eiωτ dω

≡
∫ ∞

−∞
Sb(f)e

i2πfτ df . (2.25)

To understand the function Sb(f) assume τ = 0 which will give us

Rb(0) =

∫ ∞

−∞
Sb(f) df . (2.26)

The left part of (2.26) equals mean square of the fluctuating function b(t).
Hence, Sb is the spectral power density of our fluctuations. E.g. for fluctuating
voltage it is measured in V2/Hz.



25

Figure 2.4: Two-sided and one-sided power spectral density.

Autocorrelation function Rb(t) and the spectral density are connected by
the Fourier transformation :

S2-sided
b (f) ≡ F∗{Rb(τ)} =

∫ ∞

−∞
Rb(τ) exp(−i2πfτ) dτ , (2.27)

Rb(τ) ≡ F{S2-sided
b (f)} =

∫ ∞

−∞
Sb(f) exp(i2πfτ) df , (2.28)

the index “2-sided” will be discussed later.The expression (2.27) is one of the
forms for Wiener-Khinchin theorem. It allows to calculate the spectral power
density from autocorrelation function.

If we replace the amplitude b(t) by e.g. phase ϕ(t), the spectral density
will be given in nits of rad2/Hz.

The spectral density is given for Fourier frequencies from −∞ to ∞ using
both negative and positive frequencies. In this case the spectral density is
referred to as “two-sided” S2-sided

b (f). Since Rb(τ) = Rb(−τ), the spectral
density is a real positive function and Sb(−f) = Sb(f). In experiment negative
frequencies do not exist and sometimes “one-sided” spectral density is used for
frequency range 0 ≤ f ≤ ∞:

S1-sided
b (f) = 2S2-sided

b (f) . (2.29)

2.3 Spectral representation of frequency fluc-

tuations

For an oscillator with enough high stability one can expect that the instant
frequency ν(t) does not significantly deviate from its mean value ν̄ and the
following expression is valid:

∆ν(t) ≡ ν(t)− ν̄ ≪ ν̄ . (2.30)
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Figure 2.5: Typical shape of a power spectrum.

We assume that fluctuation process ∆ν(t) is stationary, i.e., its probability
density does not depend on time. According to (2.22), let us define the auto-
correlation function for frequency fluctuations:

Rν(τ) = lim
T→∞

1

2T

∫ T

−T

∆ν(t+ τ)∆ν(t) dt (2.31)

and now use Wiener-Khinchin theorem:

S2-sided
ν (f) =

∫ ∞

∞
Rν(τ) exp(−i2πfτ) dτ . (2.32)

Besides spectral density of frequency fluctuations one can use its relative value
((2.31) and (2.32)),

Sy(f) =
1

ν20
Sν(f) . (2.33)

Similar we can define the spectral density of phase fluctuations Sϕ(f). From
(2.31), (2.32) and the fact, that the phase is the time derivative of frequency
(2π∆ν = d/dt∆ϕ(t)) we get

Sν(f) = f2Sϕ(f) . (2.34)

Combing equations we see, that

Sy(f) =

(
f

ν0

)2

Sϕ(f) . (2.35)

All three spectral densities carry similar information.
A typical shape of the spectral density function is given in fig. 2.5. There

are a few characteristic parts: δ-function around f = 0 shows up is B(t)
possesses a non-zer0 average value B̄(t). Low-frequency part, falling w at
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higher frequencies is referred to as 1/f noise. A flat, frequency-independent
part corresponds to white noise. Full power in the fluctuations is given by:∫ ∞

0

S1-sided
ν (f) df =

∫ ∞

−∞
S2-sided
ν (f) df = ⟨[∆ν(t)]2⟩ = σ2

ν . (2.36)

Here we used expressions (2.23) and (2.26). Since power should be finite, at
higher frequencies the spectral density should vanish (fig 2.5).

Measurements of different stable frequency oscillators (from quartz oscilla-
tors to atomic clocks) show, that the fluctuations of noise spectral density may
be well approximated by combination of 5 independent noise processes with
spectral density functions represented by power series of f (see table 2.1):

Sy(f) =
2∑

α=−2

hαf
α . (2.37)

These noise components correspondingly have typical shape in time represen-
tation as shown in fig. 2.6.

Figure 2.6: Typical time dependencies for noise signals. a) – white noise, b) –
noise 1/f , c) – noise 1/f2.

Plot Fig. 2.7 shows in a double-logarithmic scale the fluctuation processes.
They are easily distinguished in this plot by different tiles corresponding to
(2.37) which allows to identify it. Frequency random walk (α = −2) is is often
caused by environment (e.g. temperature fluctuations, vibrations).Frequency
flicker noise (α = −1) is usually observed in active devices like quartz oscilla-
tors, hydrogen masers and semiconductor lasers, sometimes also in Cs atomic
clock (the latter is a passive device). White frequency noise (α = 0) can be
caused by thermal noise in the feedback loop in active standards. It is also
observed in passive standards due to Poissonian noise from photons or atoms.
in this case it corresponds to a quantum noise limit. Phase flicker noise (α = 1)
comes from noises in electronic circuits, it can be reduced by improving noise
characteristics of components. White phase noise (α = 2) is important on high
frequency and can be reduced by low-pass filtering.

Please note, that mentioned dependencies in (2.37) are only the theoretical
model and the real shape can differ from theoretical one.
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Table 2.1: Contributions to frequency spectral density with the power depen-
dency of Sy(f) = hαf

α and corresponding spectral density of phase fluctuations
Sϕ(f). Allan dispersion is calculated further under assumption of additional
low-pass filter with cut frequency of fh, where 2πfhτ ≫ 1.
Sy(f) Sϕ(f) noise type σ2

y(τ)

h−2f
−2 ν20h−2f

−4 Frequency random walk (2π2h−2/3)τ
+1

h−1f
−1 ν20h−2f

−3 Frequency flicker noise 2h−1 ln 2τ
0

h0f
0 ν20h0f

−2 Frequency white noise (h0/2)τ
−1

(phase random walk)
h1f ν20h1f

−1 Phase flicker noise h1[1.038 + 3 ln(2πfhτ)]·
τ−2/4π2

h2f
2 ν20h2f

0 Phase white noise [3h2fh/(4π
2)]τ−2

Figure 2.7: Allan deviation for different noise types.
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2.4 From spectral representation of fluctua-

tions to time representation

Up to now we described the instability of oscillators either as Fourier trans-
formation (spectral density) or as Allan deviation (time representation). We
show here how to calculate Allan deviation from a known spectral density.

Allan dispersion given by (2.13) can be written as

σ2
y(τ) =

1

2
⟨(ȳ2 − ȳ1)

2⟩ = 1

2

⟨(
1

τ

∫ tk+2

tk+1

y(t′) dt′ − 1

τ

∫ tk+1

tk

y(t′) dt′

)2⟩
,

(2.38)
where tk+i − tk = iτ for integer i. In the expression (2.38) each counted value
is equal to half of difference of two squared values of y(t) for two next intervals
of length τ and Allan dispersion is obtained as a mean expected value. To get
more information one can substitute a discreet values of y(t′) by an integral
representation :

σ2
y(τ) =

⟨
1

2

(
1

τ

∫ t+τ

t

y(t′) dt′ − 1

τ

∫ t

t−τ

y(t′) dt′
)2
⟩
. (2.39)

Expression (2.39) can be rewritten as following:

σ2
y(τ) =

⟨(∫ ∞

−∞
y(t′)hτ (t− t′) dt′

)2
⟩
, (2.40)

where we introduced a function hτ (t) shown in fig. 2.8 a:

hτ (t) =



− 1√
2τ

for −τ < t < 0 ,

+
1√
2τ

for 0 < t < τ ,

0 for all oter cases

(2.41)

The integral in (2.40) is the convolution of y(t) with a function hτ (t). One
can intuitively understand the impact of hτ (t) by substituting the narrow pulse
(approximated by the Dirac δ-function) instead of y(t) which will give at output
the function hτ (t) . The convolution integral (2.40) can be interpreted as a
time response of a hypothetic linear filter with the pulse characteristic of hτ (t).
Hence, Allan dispersion is the mean square of fluctuations transmitted by such
a filter.

To take into account the filter function we use the convolution theorem,
which shows that the convolution of functions y(t) and hτ (t) in time repre-
sentation corresponds to the product of their Fourier transformations F(y(t))
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Figure 2.8: a) Filter function hτ (t) according to (2.41). b) Transmission func-
tion |Hτ (f)|2, corresponding fig. 2.8 a).

and F(hτ (t)) in frequency domain. Hence, the spectral density of the signal at
filter output is the product of the input spectral density and the filter spectral
function (modulus squared):

σ2
y(τ) =

∫ ∞

0

|Hτ (f)|2S1-sided
y (f) df , (2.42)

where the function
Hτ (f) = F{hτ (t)} (2.43)

is the Fourier-transform of the filter function h(t).
Let us calculate the filter transfer function (2.41):

H(f) = −
∫ 0

τ

1√
2τ

exp(i2πft) dt+

∫ τ

0

1√
2τ

exp(i2πft) dt

=
1√
2τ

{
− 1

i2πf
[exp(i2πft)]0−τ +

1

i2πf
[exp(i2πft)]τ0

}
=

1√
2i2πfτ

[−1 + exp(−i2πfτ) + exp(i2πfτ)− 1]

=
1√

2i2πfτ
2[cos(2πfτ)− 1] =

1√
2iπfτ

2 sin2(πfτ) . (2.44)

We see that

|Hτ (f)|2 = 2
sin4(πfτ)

(πfτ)2
(2.45)

and

σ2
y(τ) = 2

∫ ∞

0

Sy(f)
sin4(πfτ)

(πfτ)2
df . (2.46)
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This expression allows to calculate Allan dispersion directly from (one-sided)
spectral density Sy(f).

For example let us calculate Allan dispersion for phase white noise (Sy =
h2f

2). Expression (2.46) gives:

σ2
y(τ) = 2

∫ ∞

0

h2f
2 sin

4(πfτ)

(πfτ)2
df =

2h2
π2τ 2

∫ ∞

0

sin4(πfτ) df . (2.47)

Integral in (2.47) does not converge at f → ∞. In the experiment it does not
pose a problem since for any device the frequency bandwidth is restricted at
higher frequencies. If we model this restriction by the low pass filter with the
cut frequency of fh, the integral (2.47) can be calculated with the help of the
expression

∫
sin4 ax dx = 3/8x− 1/(4a) sin 2ax+ 1/(32a) sin 4ax. We get:

σ2
y(τ) =

2h2
π2τ 2

∫ fh

0

sin4(πfτ) df =
3h2fh
4π2τ 2

+O(τ−3) . (2.48)

Since we can neglect the contribution O(τ−3) for fh ≫ 1/(2πτ) the Allan
deviation for the phase white noise is the power function ∝ τ−2. Similarly one
can calculate σy(t) for other spectral shapes. It is summarized in the table 2.1.

Integral (2.46) diverges also for the phase flicker noise (Sy(f) = h1f). The
low pass filtering helps to solve this problem.

Figure 2.9: Typical Allan deviation of two hydrogen masers compared to each
other.

In general, the integral (2.46) diverges at f → ∞ for all functions in (2.37)
with α ≥ −1. Contributions with α = −1 and α = −2 diverge also at f → 0.
In real experiment this divergency is not observed - neither infinite observation
time, nor infinite bandwidth can be implemented.
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Allan dispersion can be unambiguously calculated from the spectral density,
but it is not reversible.

Representation with the help of Allan dispersion is widely used since it is
easily measured and calculated. At the other hand, the spectral representation
contains all information about noises. E.g. consider the Allan dispersion of
for the hydrogen maser ( fig 2.9). For short integration times the phase white
noise dominates (∝ τ−1) and also flicker phase noise (approx. prop to τ−1),
for longer integration times – white frequency noise (∝ τ−1/2). Then the Allan
dispersion reaches its minimum called the flicker noise floor and then starts
growing because of frequency drifts.



Lecture 3: From frequency
fluctuations to spectral line
shape

Power spectral density of a quasimonochromatic signal with a fluctuating phase.
Autocorrelation function representation. Spectral line shape. Line shape in the
cases of (i) shallow high-frequency fluctuations and (ii) strong low-frequency
phase fluctuations. Line width. Transformation of the line shape in non-linear
processes like second harmonic generation.

3.1 Power spectral density of a quasimonochro-

matic signal with a fluctuating phase.

Regularly by studying spectral properties of a laser or rf oscillator one is inter-
ested in a narrow spectral region around the carrier at frequency ν0. For perfect
oscillator it should be a Dirac-δ function, but for a real oscillator phase fluc-
tuations result in spreading of the power around some frequency band around
ν0.

The spectrum can be measured by different tools. For example, it can be a
narrow-band filter which central frequency can be tuned around the carrier (in
optical region one can use a Fabri-Perot cavity). Another approach is to use
a number of narrow band filters in parallel. Also it is possible to implement
Fast Fourier Transformation for the signal of interest.

It is still necessary to note that the concept of power spectrum with fixed
shape and envelope is not applicable to all fluctuation processes. For example,
the 1/f noise will not result in the well-defined line shape because of its drifting
nature. The line shape will depend on the observation time in this case.

We will show here how one can calculate the line shape knowing a phase
noise spectral density Sϕ(ν). According to (2.27) and (2.28) this (two-sided)
spectral density is given via Fourier transformation

SE(ν) =

∫ ∞

−∞
exp(−i2πντ)RE(τ) dτ (3.1)
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from the correlation function

RE(τ) = ⟨E(t+ τ)E∗(t)⟩ (3.2)

for the electric field E(t). We will neglect amplitude fluctuations in this case.

E(t) = E0 exp i[2πν0t+ ϕ(t)] (3.3)

Autocorrelation function looks like:

RE(τ) = E2
0 exp[i2πν0τ ]⟨exp i[ϕ(t+ τ)− ϕ(τ)]⟩ . (3.4)

The mean value ⟨exp i[ϕ(t+ τ)− ϕ(τ)]⟩ can be calculated via spectral phase
noise density Sϕ(f). First of all, let us assume that these fluctuations are
ergodic (averaging over time is equivalent to averaging over ensemble):

exp[iΦ(t, τ)] = ⟨exp[iΦ(t, τ)]⟩ =
∫ ∞

−∞
p(Φ) exp(iΦ) dΦ , (3.5)

where
Φ(t, τ) = ϕ(t+ τ)− ϕ(t) (3.6)

– is the phase increment over time τ . In the right part of exp. (3.5) we use a
regular definition of mathematical expected value (mean) of exp[iΦ(t, τ)] for
the given probability distribution of p(Φ). For a large number of uncorrelated
events the central limiting theorem allows to use the Gaussian probability
distribution

p(Φ) =
1

σ
√
2π

exp

(
− Φ2

2σ2

)
(3.7)

with the regular dispersion of σ2. Since the function p(Φ) is purely real, only
the real (cosine) part will be left in the integral (3.5). Substitution of (3.5) in
(3.7), taking into account

∫∞
−∞ exp(−a2x2) cos x dx =

√
π/a exp(−1/4a2) will

give us:

⟨exp[iΦ(t, τ)]⟩ = exp

(
−σ

2

2

)
. (3.8)

Using (2.11) for ⟨Φ⟩ = 0 (3.6), we get:

σ2(Φ) = ⟨Φ2⟩ = ⟨[ϕ(t+ τ)− ϕ(τ)]2⟩
= ⟨[ϕ(t+ τ)]2⟩ − 2⟨[ϕ(t+ τ)ϕ(τ)]⟩+ ⟨[ϕ(τ)]2⟩ . (3.9)

From (3.2) we get:

⟨[ϕ(t+ τ)ϕ(τ)]⟩ =

∫ ∞

0

Sϕ(f) cos(2πfτ) df = Rϕ(f) , (3.10)

⟨[ϕ(t+ τ)]2⟩ = ⟨[ϕ(τ)]2⟩ =
∫ ∞

0

Sϕ(f) df = Rϕ(0) . (3.11)
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Substitution of (3.10) and (3.11) into (3.9) will give us:

σ2 = 2

∫ ∞

0

Sϕ(f)[1− cos 2πfτ ] df , (3.12)

which allows to calculate the autocorrelation function (3.4):

RE(τ) = E2
0 exp[i2πν0τ ] exp

(
−
∫ ∞

0

Sϕ(f)[1− cos 2πfτ ] df

)
. (3.13)

Equations (3.1) and (3.13) allow to calculate the power spectral density from
the given spectral density of phase fluctuations Sϕ(f) (see (2.34)):

SE(ν−ν0) = E2
0

∫ ∞

−∞
exp−[i2π(ν−ν0)τ ] exp

(
−
∫ ∞

0

Sϕ(f)[1− cos 2πfτ ] df

)
dτ

(3.14)
under condition that the integral (3.14) converges.

3.1.1 Spectrum with shallow high-frequency fluctuations

Let us consider a case of shallow high-frequency fluctuations. For simplicity
let us re-write the expression (3.14) for circular frequencies

SE(ω) = E2
0

∫ ∞

−∞
exp−[i(ω − ω0)τ ] exp

(
−
∫ ∞

0

Sω(ω
′)
[1− cosω′τ ]

ω′2 dω′
)
dτ

(3.15)
and define the function F (τ) as

F (τ) ≡
∫ ∞

0

Sω(ω
′)
[1− cosω′τ ]

ω′2 dω′ . (3.16)

Let us also introduce the dispersion of frequency fluctuations according to

σ2
ω = Ω

2
=

∫ ∞

0

Sω(ω
′)dω′ (3.17)

with Sω(ω
′) being a one-sided spectral density. The fluctuation process ω(t)

possesses some typical correlation time τΩ (see Fig. 3.1). For a white noise the
correlation time equals to zero which provides flat and infinitely broad noise
spectrum. In real processes the spectrum is always finite and the correlation
time is non-zero τΩ > 0. The spectrum width is proportional to 1/τΩ which di-
rectly follows from the properties of Fourier transformation (or the Heisenberg
inequality).

Let us consider the case when

Ω
2
τ 2Ω ≪ 1 . (3.18)
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Figure 3.1: a) Fluctuating frequency. The mean value ω0, the dispersion Ω

and the correlation time τΩ. b)Relations between Sω(0), τΩ and Ω
2
derived

from the typical spectrum shape.

Figure 3.2: Relation between the spectral width of shallow high-frequency
fluctuations and function [1−cosω′τ ]

ω′2 .

It corresponds to a case of a short-correlated (fast) and weak (shallow) fre-
quency noise. For example, such noise may dominate in the case when some
weak but fast process in the physical system plays a dominant role. In the
case of lasers the good example would be spontaneous emission which results
is fast small phase jumps of the resulting electric field due to contribution of
spontaneous photons to the laser mode. Exactly this process dominates in
the emission of semiconductor lasers. The resulting spectral line shape will be
derived further in this section.

Let us consider the product Sω(ω
′) [1−cosω′τ ]

ω′2 under integral (3.16). The
function

[1− cosω′τ ]

ω′2 (3.19)

has a main maximum of the width of 1/τ (see Fig. 3.2). Assuming the case
τΩ ≪ τ one can approximate

F (τ) = Sω(0)

∫ ∞

0

[1− cosω′τ ]

ω′2 dω′ =
π

2
Sω(0)τ (3.20)
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since ∫ ∞

0

1− cos bx

x2
=
π|b|
2

. (3.21)

We obtain a diffusion process with the diffusion coefficient of

D =
πSω(0)

2
. (3.22)

Thus, we get for the (3.15):

SE(ω) = E2
0

∫ ∞

−∞
exp[−Dτ ] exp−[i(ω − ω0)τ ] dτ . (3.23)

The exponent exp[−Dτ ] cuts the expression under integral at τ ≈ 1/D. Let
us remember that we considered the case τΩ ≪ τ , so we get Dτ ≈ 1 and
DτΩ ≪ 1. Substituting D from (3.22) we get

π

2
Sω(0)τΩ ≪ 1 . (3.24)

From Fig. 3.2 one can approximate

Ω
2
=

∫ ∞

0

Sω(ω
′)dω′ ≈ Sω(0)

τΩ
, (3.25)

which gives us Sω(0) ≈ Ω
2
τΩ. Combining this result with (3.24) we get

π
2
Ω

2
τ 2Ω ≪ 1 which is compatible with the initial assumption (3.18).
Finally, we can easily calculate the integral (3.16)

SE(ω) = 2E2
0

D

D2 + (ω − ω0)2
. (3.26)

This is the Lorentzian line shape.

Conclusions: for the case of shallow high-frequency noise one should expect
the Lorenzian line shape according to (3.26).

3.1.2 Spectrum with slow and deep frequency fluctua-
tions

In this section we will consider different case compared to 3.1.1, namely, the
case of slow and deep fluctuations. This case corresponds mathematically to

Ω
2
τ 2Ω ≫ 1 (3.27)

(compare to (3.18)). This case corresponds to the situation when the oscillator
frequency is perturbed by some slow but intense process. In case of the laser
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Figure 3.3: Relation between the spectral width of deep low-frequency fluctu-
ations and a function [1−cosω′τ ]

ω′2 .

it can be acoustic noise or temperature fluctuations, or density perturbations
in gas lasers. In the intuitive picture, the oscillator frequency will randomly
fluctuate around some value and the resulting line shape will be a sum of
some “instant prints” of the narrow lines with individually shifted frequencies.
According to the Central limiting theorem one should expect Gaussian distri-
bution. Let us show it mathematically. Let us assume that in this case only
time intervals τ = 1/ω ≪ τΩ are important in our analysis. In this case

1− cos(ωτ) ≈ ω2τ 2

2
(3.28)

and the integral 3.16 is given as

F (τ) = τ 2
∫ ∞

0

Sω(ω
′)dω′ = Ω

2
τ 2 . (3.29)

Correspondingly,

SE(ω) = E2
0

∫ ∞

−∞
exp−[i(ω − ω0)τ ] exp[−Ω

2
τ 2] dτ . (3.30)

The second exponent cuts the integral at the typical time of τ 2 = 1/Ω
2
and,

together with assumption τ ≪ τΩ we get τ 2Ω
2 ≫ 1 which is compatible with

(3.27).
Taking the integral 3.30 one gets

SE(ω) =

√
πE2

0

Ω
e−(ω−ω0)2/4Ω

2

, (3.31)

which is the Gauusian line shape as expected from intuitive considerations.

3.1.3 Spectrum with a weak phase noise

Expression (3.14) can be transformed using (3.10) (3.11) as following:

SE(ν − ν0) = E2
0

∫ ∞

−∞
exp[−Rϕ(0)] exp[Rϕ(τ)] exp[−i2π(ν − ν0)τ ] dτ . (3.32)
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If phase fluctuations are weak
∫∞
0
Sϕ(f) df ≪ 1, we can expand two first

exponents in the power series, leaving the leading order:

SE(ν − ν0) = E2
0

∫ ∞

−∞
[1−Rϕ(0) +Rϕ(τ)] exp[−i2π(ν − ν0)τ ] dτ . (3.33)

Using definition of the Dirac-δ function and Wiener-Khinchin theorem (2.28)
we get

SE(ν − ν0) = E2
0 [1−Rϕ(0)]δ(ν − ν0) + E2

0S
2-sided
ϕ (ν − ν0) . (3.34)

Power spectrum consists of the carrier frequency (δ-function) at ν = ν0 and
two symmetrical sidebands, proportional to the spectral density of the pase
noise Sϕ for f = |ν − ν0|.

For commercial devices the useful parameter is the spectral purity L(f)
which corresponds to noise level in the side band measured by spectrum ana-
lyzer:

L(f) =
S2-sided
ϕ (ν − ν0)

1/2E2
0

. (3.35)

3.1.4 Spectrum with phase noise: power in the carrier
and carrier collapse

Returning back to the equation (3.32)

SE(ν − ν0) = E2
0

∫ ∞

−∞
exp[−Rϕ(0)] exp[Rϕ(τ)] exp[−i2π(ν − ν0)τ ] dτ . (3.36)

can leave the exponent exp[−Rϕ(0)] without expanding it to power series and
only expand the second one exp[Rϕ(τ)]. In this case the result (3.34) will be
transformed to

SE(ν − ν0) = E2
0

(
e−Rϕ(0)δ(ν − ν0) + e−Rϕ(0)S2-sided

ϕ (ν − ν0)
)
. (3.37)

We see that fraction of power in the carrier (δ(ν − ν0)) is proportional to

e−Rϕ(0) = e−ϕ2
rms , (3.38)

where −ϕ2
rms is the dispersion of the phase fluctuations (r.m.s. phase deviation

squared). For e.g. ϕ2
rms = 0 we see that the power fraction in the carrier

Pcarrier = 1 as expected for a noise-free signal. For phase fluctuations on the
order of ϕ2

rms = 1 the fraction promptly drops Pcarrier = 1/e.
Let us consider a noisy signal with phase fluctuations of ϕrms. If the signal

is transformed in the second harmonic generation process, the phase deviation
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doubles ϕ′
rms = 2ϕrms which will result in the fact, that the dispersion of the

phase fluctuations will be quadrupled.

ϕ′2
rms = 4ϕ2

rms . (3.39)

Accordingly, the power in the carrier will be reduced accordingly to (3.38). In
general case, if the signal is converted in the nth harmonic, the power in the
carrier will change as

P ′
carrier = e−ϕ′2

rms = e−n2ϕ2
rms = (Pcarrier)

n2

. (3.40)

For example, if the laser light at 972 nm contains Pcarrier = 0.97 power in the
carrier, transformation in the 8th harmonic at 121 nm will result in P ′

carrier =
(0.99)64 = 0.61. Even for the best oscillators, frequency multiplication will
result in the prompt growth of the phase noise contribution which can result
in a so-called carrier collapse. Intuitively one can explain such feature by the
fact that the noise spectral components will multiply with the carrier in the
non-linear process of harmonic transformation which result in relative increase
of the phase noise contribution.

3.2 Measurement methods

The spectral density of frequency (or phase) fluctuations can be measured by
different means. Function Sν(f) can be measured with the help of spectrum
analyzer which can be modelled as a set of narrow-band filters and detectors
measuring power at the output of each of the filter. Other method uses digital
spectrum analyzers with built-in FFT transformation function:

∆ϕ(f) = F(∆ϕ(t)) . (3.41)

Spectral density of phase fluctuations will be given as :

Sϕ(f) =
[∆ϕ(f)]2

BW
, (3.42)

where the bandwidth BW should satisfy and inequality BW ≪ f .
Frequency and phase fluctuations can be transformed into amplitude fluc-

tuations by using a discriminator. It can be slopes of frequency responses of
different electronic filters, Fabri-Perot cavities of absorption line. If the os-
cillator frequency is tuned to the slope the power at the filter output will be
linearly dependent on the frequency:

V (ν − νS) = (ν − νS)kd + V (νS) , (3.43)

where kd – is the slope a the frequency nS. A detector, installed after the filter
will allow to transform frequency fluctuations in the power fluctuations (see
fig. 3.4 a).
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Figure 3.4: a) Spectral sensitivity of filter transmission can be used for trans-
forming frequency fluctuations of input signal P (ν) into voltage fluctuations
V (ν). b) At proper selection of the working point the filter serves as frequency
discriminator: The voltage fluctuations will be approximately proportional to
frequency fluctuations. (see (3.43))

3.2.1 Heterodyne measurements

Higher frequencies may be measured by implementation of a heterodyne tech-
nique. In the heterodyne the studied signal at frequency ν is mixed with a
stable frequency ν0 giving the residual at the output. Let us consider two
harmonic signals at high frequency ν and ν0 (see fig 3.5 a), b), e.g. two laser
fields which are overlapped at a photodiode. A diode is sensitive not to electric
field, but to power of the signal which is proportional to the square of sum of
amplitudes. The photo-detector output will contain a signal with a frequency
of

νbeat = |ν − ν0| (3.44)

which can be filtered by a low-pass filter.
More generally, the photo-detector plays a role of a non-linear element. In

radio-electronics are broadly used balanced mixers which multiplies two signals
- input signal (RF) withe the heterodyne signal (LO) producing at the output
the signal of intermediate frequency (IF). If input signal are harmonic ones,
one can write

cos(ωRFt) cos(ωLOt) =
1

2
cos[(ωRF + ωLO)t] +

1

2
cos[(ωRF − ωLO)t] . (3.45)

The product contains only sum and differential frequencies. A balanced mixer
is typically built from four diodes and two transformers which, based on diode
non-linearity, multiplies two input signals.

For two signals at the same frequency ωLO = ωRF = ω, but with some
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Figure 3.5: a, b) Signals different in frequency by 10%. c) Squared sum of
signals a) b). d) Beatnote.

Figure 3.6: Balanced mixer: a) Schematics b) symbol.
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Figure 3.7: Scheme for measurement of oscillator phase noise.

phase difference ϕ we get (3.45)

cos(ωt+ ϕ) cos(ωt) =
1

2
[cos(2ωt+ ϕ) + cosϕ] . (3.46)

The low-frequency part of the output signal will depend on the phase difference
1
2
cosϕ.
Using this setup one can measure phase fluctuations according to Fig. 3.7,

where the phase of oscillator under study is compared with the phase of some
reference high-quality synthesizer.

Exercise: Calculate the spectrum of signal with white frequency noise

Solution: Let us consider an oscillator which frequency fluctuations can be
presented as a white (frequency-independent) noise S0

ν (see table 2.1). Since

Sϕ(f) =
S0
ν

f 2
=
ν20h0
f 2

, (3.47)

we can calculate the integral in the exponent (3.14) analytically using the
expression

∫∞
0
[1− cos(bx)]/x2 dx = π|b|/2:

SE(ν − ν0) = E2
0

∫ ∞

−∞
exp−[i2π(ν − ν0)τ ] exp(−π2h0ν

2
0 |τ |) dτ

= 2E2
0

∫ ∞

0

exp
(
−τ
[
i2π(ν − ν0) + π2h0ν

2
0

])
dτ . (3.48)

Calculating the integral (3.48) and leaving only the real part we get the power
spectrum :

SE(ν−ν0) = 2E2
0

h0π
2ν20

h20π
4ν40 + 4π2(ν − ν0)2

= 2E2
0

γ/2

(γ/2)2 + 4π2(ν − ν0)2
, (3.49)
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where γ ≡ 2h0π
2ν20 = 2π(πh0ν

2
0) = 2π(πS0

ν). Hence, the spectrum of the
oscillator which frequency fluctuations can be presented as white noise S0

ν , will
have a Lorentzian shape with the full width on a half maximum of

∆ν1/2 = πS0
ν . (3.50)



Lecture 4: General relativity in
applications to time and
frequency transfer

Space and time in Einstein’s theory of gravitation, basics of General relativity.
Minkowski metric tensor. Time transformation in rotating frame, gravitational
red shift, time dilation, Sagnac effect. Methods of time and frequency transfer,
clock synchronization. One way and two way transfer. Transfer of optical
frequencies.

Accurate frequency and time signals are extremely important for science
and technology. Technologies which we are today considered as standard ones
(navigation, geodesic measurements, global communication networks, high bit-
rate data transfer) vastly use highly accurate time and frequency signals. For
fundamental science these signals are demanded in satellite navigation, inter-
ferometry with very large base, measurements of fundamental constants and
development of new standards for metrology.

All these methods are using (directly of indirectly) time and frequency
transfer. Time and frequency information obtained at large distance from
the source allows to set up or correct local time scales, control oscillators and
measure the time delay between two sources. Taking into account that the time
and frequency signals transferred by electromagnetic waves penetrate the space
at the speed of light c, one can calculate coordinates from time delays. For
accurate determination of local time one has to take into account all feasible
time delays in cables and in space, etc. All these delays contribute to the
final uncertainty of time transfer. The task of frequency transfer is somehow
simpler – one need only that the delay does not change in time.

For comparison of modern highly accurate frequency signals one has to take
into account limitations arising from the General Relativity. According to SI
definition of second, each clock give the “true” second in their local reference
frame. For an observer residing in another frame, the local time will be in-
fluenced by a gravitational potential, generally different for different systems.
According to the General Relativity, time runs faster or slower depending of
the gravitational potential. Also, the frequency is influenced by the relative
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velocity and acceleration of two frames. For example, only due to the differ-
ence of gravitation potentials, the observer in the National metrology Institute
in Germany (PTB) at a hight of 80 m over see level will see the relative differ-
ence of 2 · 10−13 in respect to NIST clock (USA) at the hight of 1,6 km. The
observer at PTB will think that the clock at NIST runs faster.

4.1 Basics of General Relativity

A clock at the Earth surface influence the gravitation field and acceleration in
the rotation frame. Clock in the accelerated frame should be treated in frames
of General Relativity of the curved time and space (time-space metric).

In this theory, the interval

ds2 = gα,β(x
µ)dxαdxβ (4.1)

gives the relation between two infinitesimally close time-space events. Ten-
sor gα,β(x

µ) is a metric tensor depending on coordinates, and (xµ) ≡ (x0 =
ct, x1, x2, x3) are time-space coordinates with the coordinate time t and the
speed of light c. In equation (4.1) one uses the summation of the repeat-
ing indices according to Einstein. A time and space curvature in the Solar
system is small due to the fact, that the gravitation field is small. Metric ten-
sor components gα,β(x

µ) differ from Minkovsky tensor for Special Relativity
g00 = −1, gij = δij only by small corrections as a power series for the small
parameter, namely the gravitational potential. Here we use the symbol δij = 1
for i = j and δij = 0 for i ̸= j. Around the Earth the potential is weak and
can be approximated by a Newtonian potential U . Tensor components in an
inertial non-rotating geocentric system will be equal to

g00 = −
(
1− 2U

c2

)
, g0j = 0, gij =

(
1 +

2U

c2

)
δij . (4.2)

The non-diagonal elements of this metrical tensor in this case equal 0. The
relativistic interval can be approximated as

ds2 = −
(
1− 2U

c2

)
c2dt2 +

(
1 +

2U

c2

)
[(dx1)2 + (dx2)2 + (dx3)2] , (4.3)

where the gravitational potential U = UE +UT is the sum of Newtonian gravi-
tational potential of Earth UE and tidal potential UT , which is due to external
bodies (Sun, Moon, etc.). For the approximation of the Earth gravitational
potential one takes

UE =
GME

r
+ J2GMEa

2
1

(1− 3 sin2 ϕ)

2r3
, (4.4)
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where the coordinate r is calculated from the center of the Earth. This equa-
tion takes into account the increase of Earth radius towards equator and the
potential depends on the latitude which is given by the angle ϕ. The angle ϕ
is calculated from the equatorial plane and is positive in the northern hemi-
sphere. The equatorial Earth radius equals to a1 = 6378 136.5m, while the
value GME = 3, 986 004 418·1014 m3/s2 is the product of the gravitational con-
stant and the Earth mass. The quadrupole coefficient for the Earth is equal
to J2 = +1, 082 636 · 10−3. The expression (4.4) for the gravitational potential
provides the accuracy for the gravitational red shift and, correspondingly, for
the clock comparison the the relative level of δν/ν < 10−14.

In the coordinate system rotating together with Earth it is necessary to
perform the coordinate system transformation into the system rotating with
the constant angular velocity of ω:

x = x′ cos(ωt′)− y′ sin(ωt′) (4.5)

y = x′ sin(ωt′) + y′ cos(ωt′)

z = z′

t = t′ .

The angular speed of Earth equals to ω = 7, 292 115 · 10−5 rad/s. We consider
the case when ω(x′2 + y′2) ≪ c2.

Result of transformation of the frame without gravity taken into
account. Substitution of (4.5) and corresponding differentials into the ex-
pression for interval ds2 = −c2dt2 + dx2 + dy2 + dz2 in the inertial system will
give us

ds2 = −
[
1− ω2

c2
(x′2 + y′2)

]
c2dt′2 − 2ωy′dx′dt′ + 2ωx′dy′dt′ + dx′2 + dy′2 + dz′2

= g′α,β(x
′µ)dx′αdx′β , (4.6)

here we do not yet take into account the potential U . In the right part of
(4.6) we got an expression ω2ρ2, which is resulting from the effective poten-
tial Ucentr = ω2ρ2/2 in the frame rotating with the angular velocity ω at the
distance ρ =

√
x′2 + y′2 from the rotation axis. Thus, in the rotating system

without the gravitational potential we get

g00 = −
(
1− 2Ucentr

c2

)
. (4.7)

It has the same structure as for the interval (4.3). This shows equivalency
of gravitational potential and potential coming from the acceleration. From
(4.6) we see, that the tensor in the rotating frame has non-zero non-diagonal
elements.
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Rotating frame and gravitational potential For the spherical coordi-
nates ( r – distance to the origin, ϕ – latitude and L – angular longitude) the
coordinate transformation looks like

x′ = r cosϕ cosL (4.8)

y′ = r cosϕ sinL

z = r sinϕ

t′ = t ,

and we can get the following expression for the interval:

ds2 = −c2dt2 + [dr2 + r2dϕ2 + r2cos2 ϕ (ω2dt2 + 2ω dLdt+ dL2)] . (4.9)

Compared to (4.2), the metric in the rotating coordinate system with the
gravitational potential taken into account can be written as

g00 = −
(
1− 2U

c2
− (ω⃗ × r⃗)2

c2

)
, g0j =

(ω⃗ × r⃗)j
c

, gij =

(
1 +

2U

c2

)
δij ,

(4.10)
where the vector product of the angular velocity ω⃗ and the radius-vector r⃗
showing from the center of Earth towards the observer is equivalent to the
centripetal potential. Non-diagonal elements are responsible for Sagnac effect,
which will be considered later.

4.2 Transformation of time: gravitational shift,

time dilation, Sagnac effect

According to SI second definition, time indicated by the clock is so-called local
time τ : The time measured in the coordinate system rigidly connected to the
clock. Consider infinitely small transportation of the clock from one point to
another which is described in some external frame by two coordinate points
(x0, x1, x2, x3) and (x0 + dt, x1 + dx1, x2 + dx2, x3 + dx3). The interval

dτ =
1

c

√
−ds2 (4.11)

connects the increment of the local time dτ measured by the clock and the
increment of coordinate time dt of time t, measured in some other, external
frame. Time t is called as coordinate time. The increment of the coordinate
time dt is connected with the increment of the local time by a simple expression

dt = dτ
dt

dτ
, (4.12)
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which can be calculated using (4.11) at some moment (x0, x1, x2, x3). Inte-
gration of (4.12) along the world’s line will give us the coordinate time dt(t).
The derivative dτ/dt can be calculated using (4.1) and (4.11) as

dτ

dt
=

√
−g00(x0, x1, x2, x3)−

2

c
g0i(x0, x1, x2, x3)

dxi

dt
− 1

c2
gij(x0, x1, x2, x3)

dxi

dt

dxj

dt
.

(4.13)
Close to the Earth’s surface the influence of the gravitational potential on

the metric is small (2U/c2 ≈ 1, 4 · 10−9 ≪ 1). Hence we will consider only
small deviation from the flat space using some small parameter h(t)

dτ

dt
≡ 1− h(t) , (4.14)

where h(t) is the power series over 1/c. The difference between the coordinate
and local time is thus equals to

∆t ≡ t− τ =

∫ t

t0

h(t)dt . (4.15)

The difference ∆t can be calculated either using metric in the geocentric frame
(4.3) or in the coordinate system rotating together with Earth (4.9). For the
metric in the geocentric non-rotating frame (4.3) the non-diagonal elements
equal to zero and the substitution into (4.13) will give us

h(t) = 1−

√(
1− U

2c2

)
− 1

c2

(
1 +

U

2c2

)
v2 . (4.16)

Expanding it in power series we will get

h(t) =
U(t)

c2
+

v2

2c2
+O

(
1

c4

)
. (4.17)

The second part in this expression is known as time dilation or the second
order Doppler effect for the clock moving with velocity v⃗ in respect to the
frame. The contribution of O

(
1
c4

)
is typically less than 10−18 and will not be

considered in the future.
For the frame, rotating together with Earth, one gets the following expres-

sion

h(t) =
1

c2

[
Ug +∆U(t) +

V (t)2

2

]
+

2ω

c2
dAE

dt
, (4.18)

which one can get similar to (4.16) using the metric (4.9). Here V (t) – is
the modulus of the coordinate velocity in respect to the Earth. The last part
appears due to the Sagnac effect:

1

c2

∫ Q

P
(ω⃗ × r⃗) · dr⃗ = 1

c2

∫ Q

P
ω⃗ · (r⃗ × dr⃗) = 2

1

c2

∫ Q

P
ω⃗ · dA⃗E =

2ωAE

c2
. (4.19)
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Here AE is the area restricted by the projection on the equatorial plane of the
vector originated from the Earth’s center and pointing in the moving clocks as
shown in fig.4.1. Potential Ug = 6, 263 685 75·107 m2/s2 in (4.18) is the constant

Figure 4.1: Clock moving from the point P to Q on the Earth’s surface accumulate

a time shift due to Sagnac effect which is proportional to the area AE.

potential in the geocentric rotating coordinate frame on the geoid’s surface
which results from the equation (4.4) by adding the centripetal potential. The
equation

∆U(r⃗) =
GME

r
+ J2GMEa

2
1

(1− 3 sin2 ϕ)

2r3
+ (ω2r2 cos2 ϕ)− Ug (4.20)

gives the difference of gravitational potentials between the point with the co-
ordinate r⃗ and the geoid’s surface if the accuracy of 10−14 is enough.

Even better approximation is reached using expression

∆U(b, ϕ)

c2
= (−1, 08821 · 10−16 − 5, 77 · 10−19 sin2 ϕ)

b

m
+ 1, 716 · 10−23

(
b

m

)2

,

(4.21)
which depends on the hight from geoid b and the latitude ϕ. It is valid for
heights b < 15 km over the geoid, the relative uncertainty in this case is not
larger than 10−15.
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4.3 Time and frequency comparison

First of all, we have to agree about what means synchronization of two clocks.
We agree that synchronized clocks give the same reading at the same time.
Today one uses the “coordinate synchronization” when two events described
in some frame by full coordinate sets xµ1 and xµ2 correspondingly are considered
as simultaneous if the time coordinates are equal (x01 = x02).

One can compare two clocks placed at different positions on the Earth’s
surface P , Q by different means. Till some time the most regular method
used the physical transportation, now the exchange of electromagnetic signals
is widely used. Both these processes are described earlier mathematically in
the geocentric frame. The frame can be chosen either using (i) the inertial
frame with fixed direction of axes (e.g. pointing on distant quasars/stars) and
the origin having the same instant velocity as Earth or (ii) the rotating frame.
Equations will depend on the selected frame.

4.3.1 Comparing of transportable clock

If signal is transferred from point P to point Q using a transportable clock,
the time difference in the non-rotating geocentric frame is equal to

∆t =

∫ Q

P
ds

[
1 +

U(r⃗)− Ug

c2
+

v2

2c2

]
. (4.22)

Here U(r⃗) is the gravitational potential (only) at the clock position, v – the
clock speed in a non-rotating geocentric frame, ds – the increment of the local
distance in the clock frame.

In the rotating geocentric frame the time difference will be equal to

∆t =

∫ Q

P
ds

[
1 +

∆U(r⃗)

c2
+
V 2

2c2

]
+

2ω

c2
AE , (4.23)

where V is the clock speed in respect to the Earth surface. Vector r⃗ is pointing
clocks during transportation from P to Q. The vector projection r⃗ on the
equatorial plane restricts the area AE.

Three last terms in the (4.23) are the results of gravitation, time dilation
and Sagnac effect. The latter results from the fact that clock and Earth are
rotating with the same angular velocity. It means that the speed a non-rotation
frame will depend on the latitude which defines the distance to the Earth’s axis.
The area AE is considered as positive if clock are moving to the East. Situation
shown in fig. 4.1 corresponds to the negative AE.

4.3.2 Transfer using electromagnetic signals

For comparison of two separated clocks with the help of electromagnetic signals
of radio- or optical frequency there exist basically three methods of different
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complexity: (i) one-way transfer, (ii) differential method and (iii) differential
method.

Time passing between emission and receiving of electromagnetic signal in
a non-rotating geocentric frame equals to

∆t =
1

c

∫ Q

P
dσ

[
1 +

U(r⃗)− Ug

c2
+

v2

2c2

]
, (4.24)

where dσ is the increment of local distance between points P and Q, all other
values are the same as in (4.22).

In the rotating frame we will get

∆t =
1

c

∫ Q

P
dσ

[
1 +

∆U(r⃗)

c2

]
+

2ω

c2
AE , (4.25)

where ∆U(r⃗) is the gravitational potential in the point r⃗ reduced by the geoid’s
potential in the coordinate system rotating with Earth and AE – the equatorial
projection area.

In the case if the signal is transmitted to the satellite at the geostation-
ary orbit, the second term ∆U(r⃗) results in the correction of about the 1
ns corresponding to the distance of ct ≃ 30 cm. The third term containing
2ω/c2 = 1, 6227 · 10−6 ns/km2 can reach hundreds of nanoseconds.

One-way transfer

The simplest way of time and frequency transfer is the transmission of coded
signals. The simplest examples is are the time got by phone, TV or the In-
ternet. Radio-frequency transmitters of the short- and long wave range cover
large areas where the receiver can get sufficient signal. On-board clocks at
GPS satellites allow to receive accurate time signal over the whole globe.

The accuracy which can be achieved using this method depends on the
propagation time and can reach a few tenths of a second if one uses the Internet
line or satellite signal. This error can be significantly reduced if the client sends
the signal back and the provider of time signal can measure the whole delay
in the line client-server-client. Assuming that the delays in both propagation
directions are the same, one can introduce the correction and compensate the
significant part of the original error. For the satellite one can calculate the
correction from the time distance to the satellite divided by speed of light

Differential method

Signal distributed by one source and received by two or more clients simulta-
neously can be used for client’s clock synchronization. E.g. two users on the
Earth’s surface can use a signal from one satellite to synchronize their clocks.
Consider two stations, A and B receiving the signal tS propagating by two
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paths S –A and S –B with time delays τSA and τSB correspondingly. After
exchange later of measurement results (e.g. using regular Internet channel)
∆tA = (tS − τSA)− tA ∆tB = (tS − τSB)− tB one gets

∆tB −∆tB = (tA − tB)− (τSA − τSB) , (4.26)

which is the difference of times indicated by clocks tA − tB and corresponding
delays in the channels. This method is known as differential method and
does not pose strict demands on the satellite clock accuracy since time tS is
cancelled after the subtraction. This method was very important till 2000
when the signal from GPS satellite was deliberately perturbed to reduce the
accuracy in the public GPS channel.

Two-way transfer

The most accurate method in radio-frequency domain is the two-way satellite
time and frequency transfer. Let us consider two stations A and B, each having
its own clock, receiver and transmitter (fig. 4.2). Each of the stations sends the

Figure 4.2: Two-way transfer.

signal to the satellite which re-transmits the signal to the other station. To
reduce distortions of received signal by strong signal emitted by satellite the
two signals are transmitted in different radio-frequency bands, e.g. 14 GHz for
transmitting to the satellite and 12 GHz for back transmission.

At a moment tA clocks at the station A give a time mark for beginning
the signal transfer from A to B v via satellite and simultaneously trigger
the time interval counter at station A. The very similar procedure is started
at the station B at the moment tB. Arriving signals from the satellite are used
to stop time interval counters at station A and B. The result indicated by the
time interval counters will be equal to

∆tA = tA − tB + δB→A (4.27)

∆tB = tB − tA + δA→B . (4.28)
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If both directions are fully equivalent, the delays δB→A δA→B are the same.
The time difference of the clocks at stations A and B ∆T can be calculated
after both stations will exchange the measurement results. By subtracting
(4.28) from (4.27), we get ∆T = (∆tA −∆tB)/2.

Still, there are effects which can cause difference in propagation time for
two directions. For that case the time difference will be equal to:

∆T =
∆tA −∆tB

2
+

(τupA + τdown
B )− (τupB + τdown

A )

2
+
τA→B − τB→A

2

+
(τTA − τRB )− (τTB − τRA )

2
+ ∆τR . (4.29)

The first term (∆tA−∆tB)/2 is the measured time difference, while the second
term [(τupA + τdown

B )− (τupB + τdown
A )]/2 is the contribution from delays in one

and the other direction. If the signal transfer occurs approximately at the same
moment, the second term can be neglected. The third term takes into account
difference in the delays of the satellite re-translation device and is typically
insignificant. The fourth contribution in (4.29) is the difference of time delays
for signal transmission in the receiver and translator themselves. The last term
∆τR is the Sagnac effect which takes into account the Earth rotation.

4.3.3 Transfer of optical frequencies



Lecture 5: Introduction to
Global navigation systems

Global navigation system structure - space segment, ground segment, user seg-
ment. Satellites orbits, frequency shifts, accuracy. Data coding and decoding.
CDMA, TDMA, FDMA methods. Atmospheric errors, corrections, clock syn-
chronization. Atomic time scales TAI, UTC.

5.1 Global navigation system

Today space navigation systems become more powerful compared to ground-
based systems. Among well-known satellite navigation systems are the Ameri-
can navigation system originally designed for military applications (NAVSTAR
GPS) and Russian Global navigation system (GLONASS). Under development
are European system GALILEO and Chinese BDS or COMPASS.

5.1.1 Principles of satellite navigation

One can distinguish three large segments in the The Global system for satellite
navigation: (i) space segment, (ii) operational control segment and (iii) user
segment. Space segment consists of a number of satellites which translate sig-
nals to users. The operational control segment consists of observation stations,
ground antennas and the main control station. Observation stations track the
satellites which are in their field of view and receive the navigation signals,
transferring them to the main control station. Information is evaluated at this
station for determining the actual orbits. The main station transfers informa-
tion about individual orbit to each of the satellite thus updating navigation
signals from the satellites.

On board of each of the satellite placed an atomic clock. Besides time
signal, each of the satellites transfers information about its status and position
on the orbit. The user determines his position using the data about distance
to satellites positioned at some known coordinates in space. These distances
are determined by corresponding time delays from satellites to the user.
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For determining position on the Earth surface a GNSS receiver uses time
marks from different satellites and compares them with local built-in clock.
If a signal from some satellite “ i ” having coordinates xi, yi, zi was received
by the user having coordinates X, Y, Z (fig. 5.1), the time delay between the
emission and receiving of the signal will define the distance from the satellite
to the user.

If a clock in the receiver and clocks at satellites are perfectly synchronized,
the distance to the satellite can be calculated form the propagation time delay
∆t1 R1 = c ·∆t1. Measurement of distance to the second satellite will give the
position of the receiver in the common plane. This position will be given by the
intersection point of two circles with radii R1 and R2 as shown in fig. 5.1. For
positioning in the 3D space one needs the third satellite. But, in general case
clocks at receiver is not synchronized with on-board atomic clock. The error
of time synchronization of δt = 1µs will result in the systematic positioning
error of 300m. In the two-dimensional case shown in fig. 5.1 it is implied that
time TU of receiver clock is faster than the navigation system time TGNSS by
δtu = TU −TGNSS. The measured distances will increase by c ·δtu which results
in a wrong measurement of U ′ coordinate. Distances, calculated he signal
including the clock uncertainty δtu is called“pseudo-distance” Pi = Ri+ c · δtu.

Composing 4 equations containing four different pseudo-distances, one can
four unknown values: three space coordinates X, Y , Z and time difference δtu:

(x1 −X)2 + (y1 − Y )2 + (z1 − Z)2 = (P1 − c δtu)
2 ,

(x2 −X)2 + (y2 − Y )2 + (z2 − Z)2 = (P2 − c δtu)
2 ,

(x3 −X)2 + (y3 − Y )2 + (z3 − Z)2 = (P3 − c δtu)
2 , (5.1)

(x4 −X)2 + (y4 − Y )2 + (z4 − Z)2 = (P4 − c δtu)
2 .

This non-linear system can be solved either by linearization, or in a closed form.
The linearized system is obtained from the original one by Taylor expansion
and is solved iteratively by substituting initial expected values for coordinates
and time difference. Usually GNSS uses a reference ellipsoid for geocentric
World system WGS84.

Further we give more detailed description of typical GPS characteristics,
taking into account that other systems operate using similar principles.

5.1.2 GPS system operation

Clocks on board of GPS satellites are synchronized in respect to UTC(USNO)
and the GPS systems distributes the time signal which is an approximation
to UTC. GPS time scale is relied on readings of a number of atomic clock on
board of the satellites and ground stations which are combined by a special
procedure. This scale is corrected by an operational control segment in respect
to UTC (USNO) of the US Naval observatory within maximal deviation of 1µs.
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Figure 5.1: Principles of GNSS operation and time evaluation.

Figure 5.2: Accumulated uncertainty due to geometric effects.

Both scales were synchronized at midnight of January 6 1980, but now they
differ because UTC(USNO) does not introduce leap seconds.

Satellite orbits

For a satellite on the stationary orbit the gravitational force provides the cen-
tripetal acceleration according to :

G
MEMS

R2
=MSω

2R . (5.2)
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As we know, this law describes moving over a infinite number of closed Ke-
plerian orbits. Here GME = 3, 986 004 418 · 1014m3/s2 is the product of the
gravitational and the Earth’s mass. For covering the whole Earth’s surface,
from each of the ground points at least four satellites should be visible. The
orbit should be selected that way, that the signal is strong enough and allows
for the easiest description of the satellite position. For GPS satellites it is
chosen as a half of the day, precisely 12 hours minus 2 minutes. This feature
simplifies determination of the satellite coordinates to distant stars. For a se-
lected rotation period, the radius of the orbit will be equal to 26 560 km. To
make the second order Doppler effect and the gravitational red shift constant,
the orbits are very close to circular with the eccentricity of ϵ = 0, 02. Eccen-
tricity sets a relation between the big a and small b half-axes of the orbit as
b = a

√
1− ϵ2.

To describe a satellite moving on an orbit one needs 6 coordinates: three
space coordinates and three velocity components. This is very inconvenient.
Usually for satellite moving on Keplerian orbit one selects so-called Keplerian
parameters. The frame is “Earth equatorial frame” defined by the Earth’s
equator and the axis directed to the point of vernal equinox (the point when
Sun crosses the Earth’s equator plane in spring).

On-board clocks and satellite signals

Four independent clocks are installed on board of each of the satellites (Rb
or Cs or both). In modern satellites the number of clocks may be larger.
Clocks are used for on-board time synthesis. Since the on-board clocks are less
accurate then from the main control station, satellites also transfer information
about deviation from the true time scale.

To transport data signals, a suitable carrier frequency is required. The
choice of the carrier frequency is submitted to the following requirements:

Frequencies should be chosen below 2 GHz, as frequencies above 2 GHz
would require beam antennae for the signal reception. Ionospheric delays are
enormous for frequency rages below 100 MHz and above 10 GHz. The speed of
propagation of electromagnetic waves in media like air deviates from the speed
of light (in vacuum) the more, the lower the frequency is. For low frequencies
the runtime is falsified. The PRN-codes (explained below) require a high
bandwidth for the code modulation on the carrier frequency. Therefore a range
of high frequencies with the possibility of a high bandwidth has to be chosen.
The chosen frequency should be in a range where the signal propagation is not
influenced by weather phenomena like, rain, snow or clouds.

Based on these considerations, the choice of two frequencies proved to be
advantageous. Each GPS satellite transmits two carrier signals in the mi-
crowave range, designated as L1 and L2 (frequencies located in the L-Band
between 1000 and 2000 MHz). Civil GPS receivers use the L1 frequency with
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1575.42 MHz (wavelength 19.05 cm). The L1 frequency carries the navigation
data as well as the SPS code (standard positioning code). The L2 frequency
(1227.60 MHz, wavelength 24.45 cm) only carries the P code and is only used
by receivers which are designed for PPS (precision positioning code). Mostly
this can be found in military receivers.

Modulation of the carrier signals C/A and P-Code
The carrier phases are modulated by three different binary codes: first

there is the C/A code (coarse acquisition). This code is a 1023 chip long code,
being transmitted with a frequency of 1.023 MHz. A chip is the same as a bit,
and is described by the numbers one or zero. The name chip is used instead
of bit because no information is carried by the signal. By this code the carrier
signals are modulated and the bandwidth of the man frequency band is spread
from 2 MHz to 20 MHz (spread spectrum). Thus the interference liability is
reduced. The C/A code is a pseudo random code (PRN) which looks like a
random code (see fig. 5.3) but is clearly defined for each satellite. It is repeated
every 1023 bits or every millisecond. Therefore each second 1023000 chips are
generated. Taking into account the speed of light the length of one chip can
be calculated to be 300 m.

Figure 5.3: Phase modulation by a pseudo-random code (PRN).

Pseudo Random Numbers (PRNs)

The satellites are identified by the receiver by means of PRN-numbers. Real
GPS satellites are numbered from 1 to 32. These PRN-numbers of the satellites
appear on the satellite view screens of many GPS receivers. For simplification
of the satellite network 32 different PRN-numbers are available, although only
24 satellites were necessary and planned in the beginning. For a couple of
years, now more than 24 satellites are active, which optimizes the availability,
reliability and accuracy of the network.

The mentioned PRN-codes are only pseudo random. If the codes were
actually random, 21023 possibilities would exist. Of these many codes only
few are suitable for the auto correlation or cross correlation which is necessary
for the measurment of the signal propagation time. The 37 suitable codes
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are referred to as GOLD-codes (names after a mathematician). For these
GOLD-codes the correlation among each other is particularly weak, making
an unequivocal identification possible.

The C/A code is the base for all civil GPS receivers. The P code (p =
precise) modulates the L1 as well as the L2 carrier frequency and is a very
long 10.23 MHz pseudo random code. The code would be 266 days long, but
only 7 days are used. For protection against interfering signals transmitted
by an possible enemy, the P-code can be transmitted encrypted. During this
anti-spoofing (AS) mode the P-code is encrypted in a Y-code. The P- and
Y-code are the base for the precise (military) position determination.

Transmission of data

In the GPS system data are modulated onto the carrier signal by means of
phase modulations.

When a data signal shall be modulated onto a carrier signal by phase mod-
ulation, the sine oscillation of the carrier signal is interrupted and restarted
with a phase shift of e.g. 180. This phase shift can be recognized by a suitable
receiver and the data can be restored. Phase modulation leads to an extension
of the frequency range of the carrier signal (leading to a spread spectrum)
depending on how often the phase is shifted. When the phase changes, wave
peaks are followed by wave minimums in a shorter distance than were in the
original carrier signal (as can be seen in the graph). This kind of modulation
can only be used for the transmission of digital data. The information (clock
corrections, ephemerides, etc.) are transmitted together with PRN identifica-
tion code with 50 Hz rate (see fig. 5.4).

Figure 5.4: Data coding in GPS signal.

Uncertainties in GPS signals

Uncertainty for accurate measurement of coordinates with the help of GPS
system first of all is given by effects which influence the pdeudo-distance to
the satellite. It is called the “user uncertainty” UERE (User Equivalent Range
Errors). It can increase by the geometric factor (fig. 5.2 which is given by so-
called GDOP coefficient (Geometric Dilution of Precision). The coefficient
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GDOP is derived by solving the set of equations using all satellites in the field
of view. Analytical consideration shows that the GDOP coefficient is reversely
proportional to the volume of the polyhedron with the vertexes at satellite
positions. The uncertainty depends on a number of factors which cause the
deviation of the “pseudo-distance” from true distances.

Ephemerides. For accurate determination of the GPS receiver one has to
know the position of the satellite coordinates in respect to the globe. Because
of perturbations the satellites move not exactly on Keplerian orbits. Pertur-
bations can be of gravitational and non-gravitational nature. Deceleration of
the satellite in the high atmospheric layers and the sun wind are the strongest
non-gravitational perturbations. Gravitational perturbations result from the
ellipsoidal Earth shape and the tidal potentials. The ellipsoidal earth shape
causes the slow precession of the satellite’s orbit. As a result of all these per-
turbations the satellite’s orbits are not stationary and should be corrected once
in a while by on-board engines. The satellite position is measured by ground
stations with very well known coordinates on the Earth’s surface. The main
station analyzes received data and sends correction signals to satellites.

On-board clock uncertainties. According to the General relativity, the
observed frequency of the on-board clock depends on ins gravitational potential
and velocity (see (4.14), (4.16)). The effective potential for the clock orbiting
around the Earth at the distance R and the angular velocity ω equals to

U = −GME

R
− ω2R2

2
. (5.3)

For the clock on board of the satellite we get

Usatellite = −GME

R
− GME

2R
= −3

2

GME

R
, (5.4)

using eqs. (5.3) (5.2).
For the clock resting on the geoid’s surface we get Usurface = −62, 6 (km/s)2.

The potential difference between two clocks result in the time difference of

∆ν

ν
=

∆U

c2
=

1

c2

(
−3

2

GME

R
+ 62, 6 · 106 m

2

s2

)
. (5.5)

Using this equation one can calculate the time difference for different orbits as
shown in fig. 5.5). For low-orbit satellites the difference is negative and becomes
zero for the satellites orbiting at 3190 km over the geoid surface which is the
half of the Erath’s radius.

Time difference becomes positive for high orbits where GPS satellites or
geostationary satellites are orbiting. For observation from the ground, GPS
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clocks orbiting at the hight of R = 26 600 km will be faster for 38,5µs/day. To
compensate this effect, the on-board clock signal is corrected for −4, 464 733 ·
10−10 in relative units. Thus, the transmitted frequency is 10,229 999 995 432 6MHz
instead of 10,23MHz. It does not take into account small eccentricity of the
GPS satellite orbits. In the perigee the satellite is at the lower distance to
the Earth and its speed is increased. Both these effects result in the reduction
of the clock frequency if observed from the Earth. The maximal frequency
deviation resulting from this effect is about 70 ns.

Figure 5.5: Time difference accumulated during 24 hours between the clock on board

of the satellite with the orbit’s hight h over the geoid and the clock on the geoid

calculated using (5.5).

Atmospheric delays. Propagation of the electromagnetic waves emitted
by the satellites through the Earth’s atmosphere if different from propagation
through vacuum. The strongest perturbations take place in the ionosphere.
The refraction index of the ionosphere np for the phase velocity of the electro-
magnetic signal at frequency ν is given by the expression

np = 1 +
c2
ν2
. (5.6)

The coefficient c2 = −40.3 × ne Hz2 depends on the free electron density ne

alon the propagation path to the satellite from the receiver. The integrated
electron density is referred to as the total number of electrons TEC (Total
Electron Content). TEC value is the number of free electrons in the cylinder
with the base of 1m2. It can change in the range between 1016 m−2 to 1019 m−2

depending on the receiver position, high of the satellite Sun activity.
Since the GPS signal is modulated by information bits, it covers some

frequency band. For the data transfer the group velocity defines how fast the
pules (or bit) will propagate through a medium. The group velocity is defined
by c/ng where ng corresponds to the refraction index. From a well known
relation ng = np + νdnp/dν and (5.6) we get

ng = 1− c2
ν2
. (5.7)
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Thus, the ionospheric delay for the data transfer can be given by

∆T =
40, 3 · TEC

cν2
. (5.8)

If both bands L1 and L2 are used by the receiver, the difference of time delays
will be equal to

∆T̃ ≡ ∆T (L1)−∆T (L2) =
40, 3 · TEC

c

(
1

ν21
− 1

ν22

)
= ∆T (L1)

ν22 − ν21
ν22

.

(5.9)
One can thus calculate the delay ∆T1 at the frequency L1 from the delay
∆T̃ (5.9), which one can measure directly. Delay at the frequency L2 can be
derived from ∆T1 as ν21/ν

2
2 = (77/60)2.

In the case if receiver receives only L1 frequency band the ionospheric
delay can be taken into account only from an empiric model. Parameters of
this model are included in information sent by GPS satellites. The uncertainty
can reach up to 50% from size of the effect itself.

The lower part of the atmosphere is called troposphere and basically does
not possess dispersive properties for the frequencies lower than 15GHz. The
corresponding delay cannot be derived from L1 and L2 comparison. Change
of the distance caused by tropospheric effects should be corrected using semi-
empirical models. The correction typically corresponds to distance of few
meters.

Navigation accuracy. From 1990 to 2000 the GPS signals were deliber-
ately perturbed: a noise-like modulation was added to GPS signals. For a
regular user it resulted in significant reduction of positioning accuracy to ap-
prox. 200 m. Authorized users (mainly military) possessed tools to decipher
this modulation and avoid additional uncertainty.

Table 5.1 summarizes uncertainties for pseudo-range measurements coming
from different sources.

For increasing the accuracy of coordinate and time measurements the “dif-
ferential GPS” method is used. To implement this method, the on-ground
stations with very well known coordinates are contributing to one-way GPS
transfer. This method can considerably increase the accuracy of coordinate
measurements with a user receiver.

Time and frequency transfer using GPS

Table 5.2 summarizes relative uncertainties corresponding to transfer of time
and frequency by different methods using GPS satellites.

One-way method relies on direct time transfer form the GPS satellite. In
the differential method two distant GPS receivers receive data from the same
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Source of uncertainty uncertainty
on-board clocks 3,0m
satellite orbits 1,0m
other perturbations 0,5m
ephemerides prediction 4,2m
other 0,9m
ionospheric delay 2,3m
tropospheric delay 2,0m
receiver nose 1,5m
propagation 1,2m
by different channels
others 0,5m
sum 6,6m

Table 5.1: Uncertainties for pseudo-range measurements (status 2006) for the
space segment, control segment and user segment.

method relative
time uncertainty frequencys uncertainty

one-way <20 ns < 2 · 10−13

one-channel ≈10 ns ≈ 10−13

differential

multi-channel < 5 ns < 5 · 10−14

differential

differential with < 500 ps < 5 · 10−15

carrier phase measurement

Table 5.2: Uncertainties at the level of 2σ for GPS measurements for 24 hr
averaging time.

satellite simultaneously. For improving uncertainty one can implement car-
rier phase measurement. Usually the complicated geodesic receivers get all
information about channels PA, P1, P2 as well as L1 and L2 phase.

For sub-nanosecond accuracies one needs to now the distance between an-
tenna and the receiver with a very high accuracy (1 m is equivalent to 5 ns).

The accuracy of time transfer (status 2001) can be evaluated from the plot
fig. 5.6. The main uncertainty comes from GPS (standard deviation approx.
2,6 ns) (TWSTFT) GPS.
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Figure 5.6: The difference between time measurements at PTB and NPL for TW-

STFT (two-way transfer) and differential GPS method (code C/A). The result shows

full-day measurements for certain Julian days ( MJD=0 corresponds to 0 o’clock

17November 1858. )

5.2 Code division multiplexing (Synchronous

CDMA)

CDMA is a spread spectrum multiple access[6] technique. A spread spectrum
technique spreads the bandwidth of the data uniformly for the same trans-
mitted power. A spreading code is a pseudo-random code that has a narrow
ambiguity function, unlike other narrow pulse codes.

Each user in a CDMA system uses a different code to modulate their sig-
nal. Choosing the codes used to modulate the signal is very important in the
performance of CDMA systems. The best performance will occur when there
is good separation between the signal of a desired user and the signals of other
users. The separation of the signals is made by correlating the received signal
with the locally generated code of the desired user. If the signal matches the
desired user’s code then the correlation function will be high and the system
can extract that signal. If the desired user’s code has nothing in common with
the signal the correlation should be as close to zero as possible (thus eliminat-
ing the signal); this is referred to as cross correlation. If the code is correlated
with the signal at any time offset other than zero, the correlation should be as
close to zero as possible. This is referred to as auto-correlation and is used to
reject multi-path interference.

An analogy to the problem of multiple access is a room (channel) in which
people wish to talk to each other simultaneously. To avoid confusion, people
could take turns speaking (time division), speak at different pitches (frequency
division), or speak in different languages (code division). CDMA is analogous
to the last example where people speaking the same language can understand
each other, but other languages are perceived as noise and rejected. Similarly,



66

in radio CDMA, each group of users is given a shared code. Many codes
occupy the same channel, but only users associated with a particular code can
communicate.

Synchronous CDMA exploits mathematical properties of orthogonality be-
tween vectors representing the data strings. For example, binary string 1011
is represented by the vector (1, 0, 1, 1). Vectors can be multiplied by taking
their dot product, by summing the products of their respective components
(for example, if u = (a, b) and v = (c, d), then their dot product u·v = ac+bd).
If the dot product is zero, the two vectors are said to be orthogonal to each
other. Some properties of the dot product aid understanding of how W-CDMA
works. If vectors a and b are orthogonal, then a · b = 0 .

5.2.1 Example

Start with a set of vectors that are mutually orthogonal. (Although mutual
orthogonality is the only condition, these vectors are usually constructed for
ease of decoding, for example columns or rows from Walsh matrices.) An
example of orthogonal functions is shown in the picture on the left. These
vectors will be assigned to individual users and are called the code, chip code,
or chipping code. In the interest of brevity, the rest of this example uses
codes,v, with only 2 bits.

Walsh matirces

H(21) =

[
1 1
1 −1

]
,

H(22) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

,
and in general

H(2k) =

[
H(2k−1) H(2k−1)
H(2k−1) −H(2k−1)

]
= H(2)⊗H(2k−1).

Each user is associated with a different code, say v. A 1 bit is represented
by transmitting a positive code,v, and a 0 bit is represented by a negative
code, v. For example, if v = (v0, v1) = (1, 1) and the data that the user wishes
to transmit is (1, 0, 1, 1), then the transmitted symbols would be (v, v, v, v) =
(v0, v1, v0, v1, v0, v1, v0, v1) = (1, 1, 1, 1, 1, 1, 1, 1).

Each sender has a different, unique vector v chosen from that set, but the
construction method of the transmitted vector is identical.

Now, due to physical properties of interference, if two signals at a point
are in phase, they add to give twice the amplitude of each signal, but if they
are out of phase, they subtract and give a signal that is the difference of the
amplitudes. Digitally, this behavior can be modelled by the addition of the
transmission vectors, component by component.
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If sender0 has code (1,−1) and data (1, 0, 1, 1), and sender1 has code (1, 1)
and data (0, 0, 1, 1), and both senders transmit simultaneously, then this table
describes the coding steps:

signal0 = encode0 · code0 = (1, 0, 1, 1) · (1,−1) ≡ (1,−1, 1, 1) · (1,−1) =
(1,−1,−1, 1, 1,−1, 1,−1)

signal1 = encode1 · code0 = (0, 0, 1, 1) · (1, 1) ≡ (−1,−1, 1, 1) · (1, 1) =
(−1,−1,−1,−1, 1, 1, 1, 1)

Because signal0 and signal1 are transmitted at the same time into the air,
they add to produce the raw signal:

(1,−1,−1, 1, 1,−1, 1,−1)+(−1,−1,−1,−1, 1, 1, 1, 1) = (0,−2,−2, 0, 2, 0, 2, 0)
This raw signal is called an interference pattern. The receiver then extracts

an intelligible signal for any known sender by combining the sender’s code with
the interference pattern, the receiver combines it with the codes of the senders.
The following table explains how this works and shows that the signals do not
interfere with one another: code0 = (1,−1), signal = (0,−2,−2, 0, 2, 0, 2, 0)
decode0 = pattern · vector0
decode0 = ((0,−2), (−2, 0), (2, 0), (2, 0)) · (1,−1)
decode0 = ((0 + 2), (2 + 0), (2 + 0), (2 + 0))
data0 = (2,−2, 2, 2), meaning (1, 0, 1, 1)

code1 = (1, 1), signal = (0,−2,−2, 0, 2, 0, 2, 0)
decode1 = pattern · vector1
decode1 = ((0,−2), (−2, 0), (2, 0), (2, 0)) · (1, 1)
decode1 = ((0− 2), (−2 + 0), (2 + 0), (2 + 0))
data1 = (−2,−2, 2, 2), meaning (0, 0, 1, 1)

5.2.2 Asynchronous CDMA

When mobile-to-base links cannot be precisely coordinated, particularly due
to the mobility of the handsets, a different approach is required. Since it is not
mathematically possible to create signature sequences that are both orthogo-
nal for arbitrarily random starting points and which make full use of the code
space, unique ”pseudo-random” or ”pseudo-noise” (PN) sequences are used in
asynchronous CDMA systems. A PN code is a binary sequence that appears
random but can be reproduced in a deterministic manner by intended receivers.
These PN codes are used to encode and decode a user’s signal in Asynchronous
CDMA in the same manner as the orthogonal codes in synchronous CDMA
(shown in the example above). These PN sequences are statistically uncor-
related, and the sum of a large number of PN sequences results in multiple
access interference (MAI) that is approximated by a Gaussian noise process
(following the central limit theorem in statistics). Gold codes are an example
of a PN suitable for this purpose, as there is low correlation between the codes.
If all of the users are received with the same power level, then the variance
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(e.g., the noise power) of the MAI increases in direct proportion to the number
of users. In other words, unlike synchronous CDMA, the signals of other users
will appear as noise to the signal of interest and interfere slightly with the
desired signal in proportion to number of users.

5.2.3 Flexible allocation of resources

Asynchronous CDMA offers a key advantage in the flexible allocation of re-
sources i.e. allocation of a PN codes to active users. In the case of CDM
(synchronous CDMA), TDMA, and FDMA the number of simultaneous or-
thogonal codes, time slots and frequency slots respectively are fixed hence the
capacity in terms of number of simultaneous users is limited. There are a fixed
number of orthogonal codes, time slots or frequency bands that can be allo-
cated for CDM, TDMA, and FDMA systems, which remain underutilized due
to the bursty nature of telephony and packetized data transmissions. There is
no strict limit to the number of users that can be supported in an asynchronous
CDMA system, only a practical limit governed by the desired bit error prob-
ability, since the SIR (Signal to Interference Ratio) varies inversely with the
number of users. In a bursty traffic environment like mobile telephony, the
advantage afforded by asynchronous CDMA is that the performance (bit error
rate) is allowed to fluctuate randomly, with an average value determined by
the number of users times the percentage of utilization. Suppose there are 2N
users that only talk half of the time, then 2N users can be accommodated with
the same average bit error probability as N users that talk all of the time. The
key difference here is that the bit error probability for N users talking all of
the time is constant, whereas it is a random quantity (with the same mean)
for 2N users talking half of the time.

In other words, asynchronous CDMA is ideally suited to a mobile network
where large numbers of transmitters each generate a relatively small amount of
traffic at irregular intervals. CDM (synchronous CDMA), TDMA, and FDMA
systems cannot recover the underutilized resources inherent to bursty traffic
due to the fixed number of orthogonal codes, time slots or frequency channels
that can be assigned to individual transmitters. For instance, if there are N
time slots in a TDMA system and 2N users that talk half of the time, then half
of the time there will be more than N users needing to use more than N time
slots. Furthermore, it would require significant overhead to continually allocate
and deallocate the orthogonal code, time slot or frequency channel resources.
By comparison, asynchronous CDMA transmitters simply send when they have
something to say, and go off the air when they don’t, keeping the same PN
signature sequence as long as they are connected to the system.
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5.2.4 Spread-spectrum characteristics of CDMA

Most modulation schemes try to minimize the bandwidth of this signal since
bandwidth is a limited resource. However, spread spectrum techniques use
a transmission bandwidth that is several orders of magnitude greater than
the minimum required signal bandwidth. One of the initial reasons for doing
this was military applications including guidance and communication systems.
These systems were designed using spread spectrum because of its security and
resistance to jamming. Asynchronous CDMA has some level of privacy built
in because the signal is spread using a pseudo-random code; this code makes
the spread spectrum signals appear random or have noise-like properties. A
receiver cannot demodulate this transmission without knowledge of the pseudo-
random sequence used to encode the data. CDMA is also resistant to jamming.
A jamming signal only has a finite amount of power available to jam the signal.
The jammer can either spread its energy over the entire bandwidth of the signal
or jam only part of the entire signal.

CDMA can also effectively reject narrow band interference. Since narrow
band interference affects only a small portion of the spread spectrum signal, it
can easily be removed through notch filtering without much loss of information.
Convolution encoding and interleaving can be used to assist in recovering this
lost data. CDMA signals are also resistant to multipath fading. Since the
spread spectrum signal occupies a large bandwidth only a small portion of this
will undergo fading due to multipath at any given time. Like the narrow band
interference this will result in only a small loss of data and can be overcome.

Another reason CDMA is resistant to multipath interference is because
the delayed versions of the transmitted pseudo-random codes will have poor
correlation with the original pseudo-random code, and will thus appear as
another user, which is ignored at the receiver. In other words, as long as the
multipath channel induces at least one chip of delay, the multipath signals will
arrive at the receiver such that they are shifted in time by at least one chip from
the intended signal. The correlation properties of the pseudo-random codes
are such that this slight delay causes the multipath to appear uncorrelated
with the intended signal, and it is thus ignored.



Lecture 6: Precision
measurements in astrophysics

Pulsars as astrophysical sources of periodic pulses. Physics of pulsars. Pulsars
in double star systems. Drift of perimetrium and General relativity tests. Ra-
diation of gravitational waves. Search for drift of the fine structure constant.

Methods of precision time and frequency measurements and clock syn-
chronization open new opportunities for cosmological studies, physics of intra-
stellar media, study of exaplanetory orbits, etc. In this lecture we will consider
a few implementations and examples.

6.1 Pulsars and Frequency Standards

In 1967 researchers discovered cosmic objects emitting periodic radio-signals
which attracted a lot of interest from the community. These objects were
called “pulsars ”. They emit very broad (from radio frequencies to γ-rays)
periodic pulses with intervals from one milliseconds to a few seconds. The
number of discovered objects reached more than 1000 in 1998. It was found
out that the time interval τ between pulses was very stable (∆τ/τ ≈ 10−3),
the pulses should been emitted by solid bodies. One can assume a spinning
body with a radiofrequency source fixed on its surface with a narrow angular
emission pattern. The emitting cone periodically scans Earth similar to the
light projector in lighthouse Fig. 6.1.

For a rigid spinning body on can get a restriction coming from the fact,
that the linear speed on it’s surface cannot exceed the speed of light c. If a
pulsar rotates with a period of 1ms, its radius R cannot exceed 50 km. Pulsar
PSRB1937+21 has a rotation period of 1.6ms. It is very improbable that
pulsars with shorter period will be discovered. It is due to another relation,
connecting the centripetal acceleration and gravitational force at its surface.
Using the relation one can set a restriction to the highest angular velocity
Ω =

√
GM/R3, where G is the gravitational constant, R is the radius and

M = 4πR3ρ/3 is the mass of the body. If we substitute the highest known
density ρ which is the neutron star density ρ ≈ 1017 kg/m3 we get the minimal
rotation period of 1,2ms. It is considered, that pulsars are the rotating neutron
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Figure 6.1: The model of a pulsar. The cone of radiation crosses Earth with a
given period.

stars.
Neutron star is the star which has burnt its nuclear fuel. Stars with masses

in the range 5M⊙ ≤M ≤ 10M⊙ (M⊙ the solar mass) can turn in neutron stars.
Typically, there is an equilibrium between the gravitational forces compressing
a star and the radiation pressure. When star is burnt out, the radiation pres-
sure reduces and it turns into the supernova with corona expanding over a large
volume. Temperature of the remaining matter becomes so high, that proton
react with electrons turning into neutrons and neutrinos (p+ + e− → n + ν).
The remaining matter consists of neutrons n forming the neutron star. If the
original star had a magnetic field, its strength will significantly grow after the
collapse. Assume, that the the radius of initial star was Ri ≈ 7 · 108m before
collapse and become Rf ≈ 5 ·104m after the collapse. Due to the conservation
of magnetic flow we get Bi4πR

2
i = Bf4πR

2
f , which corresponds to the growth

of magnetic field strength for 8 orders of magnitude. It can reach the level of
Bf = 108T. There are pulsars with the magnetic field on its surface of up to
8 · 1010T called “magnetars”.

Periodicity of the radiation emitted by pulsars can be explained by the
model described in Fig. 6.1. Since a neutron star is rotating with the angular
velocity Ω, charged particles accelerate along the magnetic field lines in the
star’s magnitosphere. Radiation is preferably emitted close to the magnetic
poles of the neutron star in narrow conic space volumes with the axes coinciding
with the magnetic axis of the star.

The magnetic axis of the star does not coincide with its rotation axis, which
means that the radiation of the pulsar periodically crosses the observer’s posi-
tion. It means that the period of pulses detected from the neutron star should
coincide with its rotation period. Such pulse sources are typically observed
in a radio-frequency region from a few hundreds of megahertz to a few gi-
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gahertz. Although the total power emitted by the pulsar is huge, the power
which reaches the Earth is very small and can be detected only with very sen-
sitive devices. Usually, the spectral density of the pulsar reaching the Earth in
in the range of 10−29Wm−2Hz−1 to 10−27Wm−2Hz−1 for the detection band
around 400MHz. Typically, it is not possible to detect the pulsed directly
because of poor signal/noise ratio. But, knowing that the pulses are emitted
periodically, one can use regular methods of phase detection which allows to
measure signals coming from pulsars. Digitized signal from the telescope is
accumulated in different time windows corresponding to the expected signal
period. It was discovered, that each pulsar possesses its own characteristic
pulse envelope (averaged over many periods) as shown in fig. 6.2.

Figure 6.2: Averaged envelopes for the pulsars PSRB1855+09 and PSRB1937+21

measured at frequencies 1.4GHz and 2.4GHz. Such envelopes are the “fingerprints”

of each of the pulsar.

About 3% of pulsars have an additional small pulse which falls approxi-
mately to the center of the period of the main pulse (see fig. 6.2). Such signal
structure may be explained by the fact, that the observer on the Earth may
receive the signal from both poles of the pulsar.

Pulsars can be distinguished in two main groups. The first group of “slow”
or “regular” pulsars contains most of the pulsars. Pulsars, belonging to this
group have the period P in the range (33 ms < P < 5 s). The period of these
pulsars is continuously growing with the typical rate of Ṗ ≈ 10−15 s/s. The
second group is referred to as “millisecond pulsars” and includes pulsars with
the period from 1,5ms to 30ms. The period of these pulsars changes much
slower, down to Ṗ ≈ 10−19 s/s.

There is another difference between “slow” and “millisecond” pulsars -
they have different age (105 years < τ < 109 years and 109 years respectively)
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and different strengthes of magnetic field on their surface (B ≈ 108T and
B ≈ 104T). About 80% of millisecond pulsars have orbital twins, while for the
slow pulsars the fraction of double-stars (pusar+twin) is much less (1%).

Relying on the accepted model describing a pulsar for interpretation of
experimental data, the pulsar can be treated as a huge classical magnetic dipole
M . The magnetic moment is rotating with the angular frequency Ω and the
angle between the magnetic moment and the rotation axis is α. In frames of
classical electro-dynamics, the rotating magnetic dipole emits radiation with
the power equal to

dE

dt
=

2(M sinα)2Ω4

3c2
. (6.1)

Emitted power results in deceleration of rotation (the power is taken from
rotation energy)

Erot =
1

2
ΘΩ2 , (6.2)

where Θ is a moment of inertia of the neutron star. For the sphere of radius
R ≈ 15 km and density of ρ ≈ 1017 kg/m3 it equals to Θ = 2/5MR5 =
8/15πρR5 ≈ 1, 3·1038 kgm3. The rate of the energy loss can be calculated from
the angular velocity of the pulsar Ω = 2π/P and its derivative ω̇ = −2πṖ/P 2:

dErot

dt
= ΘΩΩ̇ = −4π2Θ

Ṗ

P 2
. (6.3)

For most of the slow pulsars the rate is in the range 1023 W ≤ Ėrot ≤ 1026 W.
The upper limit corresponds to the power emitted by our Sun due to nuclear
fusion. Comparing the rotational energy losses (6.3) and full energy emitted
by magnetic dipole (6.1) we get

Ω̇ =
2(M sinα)2

3Θc3
Ω3 . (6.4)

Using this equation, and evaluating the pulsar’s magnetic moment one can

evaluate the magnetic field on it’s surface B ∝
√
PṖ .

6.1.1 Pulsar chronometry

For measuring parameters which define the pulsar properties one should take
into account parameters influencing the signals received by antennas on the
Earth. First of all, one should take into account the Earth’s rotation. Typi-
cally, the baricentric (with the Sun at origin) system is used. There are a lot of
corrections which should be taken into account if the signal is measured on the
Earth: interstellar medium dispersion, General relativity corrections including
time dilation, gravitational red shift, Saphiro delay, etc. Pulsar timing us used
for pulsar time scale which possesses a very good long-term stability down to
10−15 in 3 years averaging time.
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The quality of pulsar time scale is deteriorated by some unexpected fre-
quency jumps which take place occasionally - so called glitches. After the
glitch the pulsar period changes. The glitch can be treated as an neutron
star “earthquake” changing the moment of inertia of the star and its angular
velocity.

A pulsar is a unique object, since it can be considered as a distant clock
in a strong gravitational field. Even more interesting is the case of so-called
“binary pulsar”, when the pulsar rotates in the system of another star. Such
an object allows to make sensitive tests of General relativity theory. For this
research Hulse and Taylor were awarded a Nobel Prize in 1993. They studied
a double pulsar 1913+16 consisting of a neutron star and its twin.

Their research allowed to make a high-sensitive test of relativity theory
which is 4 orders of magnitude more sensitive than the prominent test based
on the perithelium precession of Mercury. As will be shown in the next section,
the rotation period changes with the rate of Ṗ ≈ −3 · 10−12 which may be due
to the emission of gravitational waves.

6.2 Binary pulsars

Figure 6.3: Orbit of binary pulsar

The pulsar and its companion both follow elliptical orbits (Fig. 6.3) around
their common center of mass. Each star moves in its orbit according to Kepler’s
Laws; at all times the two stars are found on opposite sides of a line passing
through the center of mass. The period of the orbital motion is 7.75 hours,
and the stars are believed to be nearly equal in mass, about 1.4 solar masses.
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As shown in the figure here, the orbits are quite eccentric. The minimum
separation at periastron is about 1.1 solar radii; the maximum separation at
apastron is 4.8 solar radii. In the case of PSR 1913+16, the orbit is inclined at
about 45 degrees with respect to the plane of the sky, and it is oriented such
that periastron occurs nearly perpendicular to our line of sight.

Figure 6.4: Pulse repetition frequency of a binary pulsar

The pulse repetition frequency, that is, the number of pulses received each
second, can be used to infer the radial velocity of the pulsar as it moves through
its orbit. When the pulsar is moving towards us and is close to its periastron,
the pulses should come closer together; therefore, more will be received per
second and the pulse repetition rate will be highest (Fig. 6.4). When it is
moving away from us near its apastron, the pulses should be more spread out
and fewer should be detected per second.

Figure 6.5: Time ticking in a binary pulsar system.

When they are closer together, near apastron, the gravitational field is
stronger, so that the passage of time is slowed down – the time between pulses
(ticks) lengthens just as Einstein predicted. The pulsar clock is slowed down
when it is travelling fastest and in the strongest part of the gravitational field;
it regains time when it is travelling more slowly and in the weakest part of
the field (Fig. 6.5). The orbit of the pulsar appears to rotate with time; in the
diagram (Fig. 6.6), notice that the orbit is not a closed ellipse, but a continuous
elliptical arc whose point of closest approach (periastron) rotates with each
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Figure 6.6: Precession of the pulsar orbit.

orbit. The rotation of the pulsar’s periastron is analogous to the advance of
the perihelion of Mercury in its orbit. The observed advance for PSR 1913+16
is about 4.2 degrees per year; the pulsar’s periastron advances in a single day
by the same amount as Mercury’s perihelion advances in a century.

Figure 6.7: Precession of the pulsar orbit.

In 1983, Taylor and collaborators reported that there was a systematic
shift in the observed time of periastron relative to that expected if the orbital
separation remained constant (Fig. 6.7). In the diagram shown here, data taken
in the first decade after the discovery showed a decrease in the orbital period
as reported by Taylor and his colleagues of about 76 millionths of a second per
year. By 1982, the pulsar was arriving at its periastron more than a second
earlier than would have been expected if the orbit had remained constant since
1974

6.3 White dwarfs

Masses of white dwarfs are on the order of Sun mass, but their size is much
smaller R << 0.01R⊙, which means, that their density is very high and each
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cubic centimeter of the white dwarf’s matter weights many tons ρ ∼ 105 −
109 g/cm3. At such densities electron shells in atoms are destroyed and the
matter consists of electron-nuclei plasma. Sine electrons are fermions, the
electronic component is the degenerate electronic gas. Pressure P of such gas
depends on the density:

P = K1ρ
5/3 , (6.5)

where K1 is the constant and ρ is the gas density. Contrary to the Clapey-
ron’s equation (equation of state of ideal gas), the degenerative electronic gas
pressure does not depend on temperature (Fig. 6.8).

Figure 6.8: Equations of states for ideal and degenerative gases.

Equation (6.5) is valid only for a non-relativistic electron gas. Since the
Fermi energy is very large, and the relation kT << EF is valid, the gas remains
degenerative even at very high temperatures. Since two electrons cannot be
at the same quantum state according to Pauli’s principle (energy and the mo-
mentum cannot be the same), electrons in the white dwarf grow so much that
the gas becomes a relativistic. For the relativistic electron gas the dependency
differs from (6.5):

P = K2ρ
4/3 . (6.6)

The averaged density of the white dwarf equals ρ ∼M/R3, where M is its
mass and R – its radius. Pressure will be proportional to P ∼ M4/3/R4 and
its gradient inside the star will be given by

P

R
∼ M4/3

R5
(6.7)

Gravitational force, acting against this pressure can be written as :

ρGM

R2
∼ M2

R5
. (6.8)
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Although eqns. (6.7) and (6.8) show similar dependency on radius of the
star, the forces differently depend on the mass: As ∼M4/3 and ∼M2 respec-
tively. Due to this fact, there is a certain mass of the star when they balance
and, since gravitational force stronger depends on the mass, than the electronic
gas pressure difference, the radius of the white dwarf decreases with its mass
(see Fig. 6.9). If the mass overcomes a certain limit, the star will collapse and
will turn into a neutron star. The limit calls a “Chandrasekhar limit”.

Figure 6.9: Precession of the pulsar orbit.

6.4 Introduction to gravitational waves

The effects of a passing gravitational wave can be visualized by imagining a
perfectly flat region of spacetime with a group of motionless test particles lying
in a plane. As a gravitational wave passes through the particles along a line
perpendicular to the plane of the particles (i.e. following your line of vision
into the screen Fig. 6.10), the particles will follow the distortion in spacetime,
oscillating in a ”cruciform” manner. The area enclosed by the test particles
does not change and there is no motion along the direction of propagation.

Gravitational wave has a very small amplitude (as formulated in linearized
gravity). However they enable us to visualize the kind of oscillations associated
with gravitational waves as produced for example by a pair of masses in a
circular orbit. In this case the amplitude of the gravitational wave is a constant,
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Figure 6.10: Effect of gravitation wave on a ring of particles. The wave passes

orthogonal to the screen.

but its plane of polarization changes or rotates at twice the orbital rate and
so the time-varying gravitational wave size (or ’periodic spacetime strain’)
exhibits a variation as shown in Fig. 6.10.

Power radiated by orbiting bodies. Gravitational waves carry energy
away from their sources and, in the case of orbiting bodies, this is associated
with an inspiral or decrease in orbit. Imagine for example a simple system
of two masses such as the Earth-Sun system moving slowly compared to
the speed of light in circular orbits. Assume that these two masses orbit each
other in a circular orbit in the x-y plane. To a good approximation, the masses
follow simple Keplerian orbits. However, such an orbit represents a changing
quadrupole moment. That is, the system will give off gravitational waves.

Suppose that the two masses are m1 and m2, and they are separated by a
distance r. The power given off (radiated) by this system is:

P =
dE

dt
= −32

5

G4

c5
(m1m2)

2(m1 +m2)

r5
, (6.9)

where G is the gravitational constant, c is the speed of light in vacuum and
where the negative sign means that power is being given off by the system,
rather than received. For a system like the Sun and Earth, r is about 1.5 ×
1011m and m1 and m2 are about 2× 1030 and 6× 1024 kg respectively. In this
case, the power is about 200 watts. This is truly tiny compared to the total
electromagnetic radiation given off by the Sun (roughly 3.86× 1026W).

In theory, the loss of energy through gravitational radiation could even-
tually drop the Earth into the Sun. However, the total energy of the Earth
orbiting the Sun (kinetic energy plus gravitational potential energy) is about



80

1.14 × 1036 joules of which only 200 joules per second is lost through gravi-
tational radiation, leading to a decay in the orbit by about 10−15 meters per
day or roughly the diameter of a proton. At this rate, it would take the Earth
approximately 1 × 1013 times more than the current age of the Universe to
spiral onto the Sun.

Wave amplitudes from the EarthSun system. We can also think in
terms of the amplitude of the wave from a system in circular orbits. Let θ
be the angle between the perpendicular to the plane of the orbit and the line
of sight of the observer. Suppose that an observer is outside the system at a
distance R from its center of mass. If R is much greater than a wavelength,
the two polarizations of the wave will be

h+ = − 1

R

G2

c4
2m1m2

r
(1 + cos2 θ) cos [2ω(t−R)] (6.10)

h× = − 1

R

G2

c4
4m1m2

r
(cos θ) sin [2ω(t−R)] . (6.11)

Here, we use the constant angular velocity of a circular orbit in Newtonian
physics: ω =

√
G(m1 +m2)/r3.

For example, if the observer is in the x-y plane then θ = π/2, and cos(θ) =
0, so the h× polarization is always zero. We also see that the frequency of the
wave given off is twice the rotation frequency. If we put in numbers for the
Earth-Sun system, we find:

h+ = − 1

R

G2

c4
4m1m2

r
= − 1

R
1.7× 10−10 meters. (6.12)

In this case, the minimum distance to find waves is R > 1 light-year, so
typical amplitudes will be h ∼ 10−26. That is, a ring of particles would stretch
or squeeze by just one part in 1026. This is well under the detectability limit
of all conceivable detectors.

6.4.1 Very Large Baseline Interferometry

Radio-astronomy played an important role in the study of astrophysical objects
providing an essential information about our Universe. The smallest angle
between two objects θ resolvable by a telescope equals to

θ = α
λ

b
. (6.13)

Diffraction on the aperture b limits he resolution of a telescope. The constant
α is on the order of 1 and depends on the telescope’s shape and its illumination.

To reach resolution demanded by today’s goals, the size of radio-telescope
(radio-telescopes typically work in the range from 1 cm to 1m) should be so
big that it cannot be implemented on practice.
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Diffraction limit (6.13) results from interference of different partial waves
on different parts of the telescope’s aperture. A resolution can be increased if
signals from two different telescopes are combined with proper phase relation.
Mutual correlation of signals from two different receivers will give an interfer-
ence pattern. After proper analysis it allows to recover an exact position of the
astrophysical object and its shape. E.g. the system VLA (Very Large Array)
combines 27 antennas withe the maximal separation od 36 km. Its resolution
at 43GHz reaches 0.04 arc. sec.

In other case, telescope can cover different continents (VLBI) as shown in
Fig. 6.11. For such large distances the physical combination of signals in real

Figure 6.11: Interferometry with a large baseline (VLBI).

time is not possible. Instead, signals are recorded simultaneously together with
time marks from synchronized clocks. After correction for the Doppler shift
data are analyzed using correlator. One can consider VLBI operation principle
as measuring time delay in signal arriving by two telescopes at large distance.

VLBI allows for a very accurate stellar coordinate system (1 arc sec using
quasars as the reference). It is very useful for defining the position of as-
trophysical objects and description of Earth rotation. Measuring the relative
position of antennas allows for measuring relative velocity of continents.

The largest on Earth interferometer base is limited by the Earth diameter
12 750 km. In 1997 Japan launched a satellite HALCA with 8-m on-board
antenna. The orbit allowed for the base line of 30 000 km. Mission VSOP
allowed to measure objects with resolution of 10−3 arc. sec. at 5GHz frequency.

6.5 Search for drift of the fine structure con-

stant



Lecture 7: Two levels atomic
system and frequency standards

Optical Bloch equations. Pseudospin. Rabi oscillations. Excitation by sequence
of coherent pulses. Ramsey method. Atomic interferometry. Microwave fre-
quency standards. Hydrogen maser. Cesium beam apparatus. Allan deviation,
stability, accuracy.

7.1 Two-level system

Description of any atomic system is usually started from two-level model. Most
of the important processes like atomic level excitation, laser cooling, etc., are
adequately described by this simplified model. Although most of the real
atomic systems are very complex and have multiple levels, the two-level atom is
still a very important model which significantly helps understanding of physical
processes.

Consider a system with two levels with the energies E1 and E2, E2 > E1.
The lower state is usually called the ground state and the upper state – excited
state.

If two levels are coupled by an external field, the Hamiltonian can be written
as

H = H0 +Hint . (7.1)

Here H0 presents the system itself, while interaction is given by Hint. For the
Hamiltonian H0 one can write the time-independent Schrödinger equation

H0ϕk(r⃗) = Ekϕk(r⃗) , (7.2)

without taking into account the spontaneous emission. Here k = 1, 2, and r⃗
describes all internal degrees of freedom (electron positions, spins). External
field cases perturbation Hint. Since eigenfunctions ϕk(r⃗) form a full set , the
general solution ψ(r⃗, t) of (7.8) can be given by their linear combination:

ψ(r⃗, t) = c1(t)e
−iE1t/h̄ϕ1(r⃗) + c2(t)e

−iE2t/h̄ϕ2(r⃗) . (7.3)
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The coefficients ck(t) are time dependent which results from interaction Hint.
The explicit form of the Hamiltonian describing interaction with an electro-
magnetic field can be obtained from power series of interaction of charged
particle with an external field.

If a charged particle with mass m, charge q and coordinate r⃗ is placed
in the field with a vector potential A(r⃗, t). If the wavelength is much larger
compared to the atom size, the interaction can be presented as power series.
The most important interaction Hamiltonian forms are:

Hint = −d⃗ · E⃗(r⃗0, t) = +qr⃗ · E⃗ (electric dipole interaction), (7.4)

Hint = −µ⃗ · B⃗(r⃗0, t) (magnetic dipole interaction), (7.5)

Hint =
q

2
r⃗ · r⃗ · ∇⃗r0E⃗(r⃗0, t) (electric quadruple interaction), (7.6)

where d⃗ and µ⃗ are the quantum mechanical electric dipole and magnetic oper-
ators, correspondingly.

The electric dipole moment equals d⃗ = qr⃗ = er⃗ (e = 1, 602 · 10−19 As. The
electric dipole interaction couples atomic levels with opposite parity (e.g. S-P,
P-D) if corresponding selection rules are fulfilled.

The magnetic dipole interaction describes interaction of atomic magnetic
moment µ⃗ with magnetic field B⃗(r⃗0, t) of the electromagnetic field. Magnetic
dipole transitions can be excited between levels of the same parity, most fre-
quently used are magnetic transitions between ground-state sublevels in alkali
atoms (Cs and Rb microwave standards) and H-maser.

Weak electric quadrupole transitions are widely used in optical frequency
standards and can couple, e.g. S and D levels.

Here we will consider electric dipole interaction. External electric field tries
to separate positive and negative charges, polarizing a particle. We assume
that the induced dipole is parallel to the electric field of the plane-polarized
wave E⃗(r⃗0, t) = E0ϵ⃗ cos(ωt).

7.2 Optical Bloch equations

Evolution of a two-level system can be nicely presented by a geometric picture
suggested by Feinmann, Wernon and Hellwarth. One can re-write equation
(7.3) introducing coefficients C1 ,2(t):

ψ(r⃗, t) = C1(t)ϕ1(r⃗) + C2(t)ϕ2(r⃗) . (7.7)

Here we merged the fast oscillating part directly in the coefficients. Substitut-
ing this expression in time-dependent Schrödinger equation

Hψ = ih̄
∂ψ(t)

∂t
(7.8)
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Figure 7.1: A two-level system.

will give is the following set of equations:

dC1(t)

dt
= +i

ω0

2
C1(t)−

i

h̄
C2(t)H12(t) (7.9)

dC2(t)

dt
= −iω0

2
C2(t)−

i

h̄
C1(t)H21(t) . (7.10)

Here H21 ≡
∫
ϕ∗
2Hintϕ1d

3r, H12 ≡
∫
ϕ∗
1Hintϕ2d

3r = H∗
21 and h̄ω0 = E2 − E1.

The zero energy is taken as (E1 + E2)/2 = 0, which will give us E2 = h̄ω0/2
and E2 = −h̄ω0/2. The sketch is shown in Fig. 7.1.

Feinmann used three real functions using coefficients C1(t) and C2(t):

R′
1(t) ≡ C2(t)C

∗
1(t) + C∗

2(t)C1(t) (7.11)

R′
2(t) ≡ i[C2(t)C

∗
1(t)− C∗

2(t)C1(t)] (7.12)

R′
3(t) ≡ C2(t)C

∗
2(t)− C1(t)C

∗
1(t) , (7.13)

which and form a vector in the 3D space: R⃗′(t) = (R′
1(t), R

′
2(t), R

′
3(t)). This

vector is usually formally treated as a pseudospin vector. From (7.11) – (7.13)
one can get a relation (the total population of the system equals 1)

R′
1
2(t)+R′

2
2(t)+R′

3
2(t) = [C2(t)C

∗
2(t)+C1(t)C

∗
1(t)]

2 =
(
|c2(t)|2 + |c1(t)|2

)2
= 1 .

(7.14)

The pseudospin length is constant and equals 1: |R⃗′(t)|2 = 1. Its end moves
along some trajectory on so-called Bloch sphere of unit radius.

To understand the pseudospin components we will write equations describ-
ing its evolution. For example, the derivative dR′

1(t)/dt can be calculated form
(7.11):

dR′
1(t)

dt
=
dC2(t)

dt
C∗

1(t) + C2(t)
dC∗

1(t)

dt
+
dC∗

2(t)

dt
C1(t) + C∗

2(t)
dC1(t)

dt
. (7.15)
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Using (7.9) and (7.10), as well as (7.12), (7.13) we get:

dR′
1(t)

dt
=

1

ih̄

h̄ω0

2
C2C

∗
1 +

1

ih̄
C1C

∗
1H21 +

1

ih̄

h̄ω0

2
C2C

∗
1 −

1

ih̄
C2C

∗
2H

∗
12

− 1

ih̄

h̄ω0

2
C∗

2C1 −
1

ih̄
C1C

∗
1H

∗
21 −

1

ih̄

h̄ω0

2
C∗

2C1 +
1

ih̄
C2C

∗
2H12

=
2ω0

2i
(C2C

∗
1 − C∗

2C1) +
1

ih̄
C1C

∗
1(H21 −H∗

21) +
1

ih̄
C2C

∗
2(H12 −H∗

12)

= −ω0R
′
2(t)−

2

h̄
Im(H21)R

′
3(t) . (7.16)

One can get similar equations for R2(t) and R3(t). The full equation set called
optical Bloch equations is written here:

dR′
1(t)

dt
= −ω0R

′
2(t)−

2

h̄
Im(H21)R

′
3(t) (7.17)

dR′
2(t)

dt
= +ω0R

′
1(t)−

2

h̄
Re(H21)R

′
3(t) (7.18)

dR′
3(t)

dt
= +

2

h̄
Re(H21)R

′
2(t) +

2

h̄
Im(H21)R

′
1(t) . (7.19)

It can be compactly written as:

R⃗′(t)

dt
= Ω⃗′ × R⃗′(t) , (7.20)

where Ω⃗′ is some vector with three real components

Ω⃗′ ≡
(
2

h̄
Re(H21),−

2

h̄
Im(H21), ω0

)
. (7.21)

Equation (7.20) is very similar to the equation describing dynamics of a spin-
ning body or precession of the spin-1/2 particle in magnetic field. Exactly this
fact caused the name pseudospin.

The optical Bloch equations describe how a two-level system interacts with
an external electromagnetic field. The components R′

1 R′
2 correspond to the

real and imaginary parts of atomic polarization, while the component R′
3 is

the probability difference to find the system in the upper ϕ2 or lower ϕ1 state.
In other words it is the population inversion of the system. For an atom in the
ground state the Bloch vector is directed down, for the upper state - to the
upper pole of the sphere.

This simple picture adequately describes the system evolution only in the
case if the precession rate R⃗′ is much faster compared to the change of vector
Ω⃗′. For example we consider a regular π-pulse: the resonant pulse of electro-
magnetic field is applied for the time τ selected such way, that its product to
the Rabi frequency equals π: ΩRτ = π, Fig. 7.2. In usual application the pulse
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Figure 7.2: The pseudospin vector is precessing around vector Ω⃗′.

duration is much larger compared to the period of electromagnetic field and
pseudospin rotates many time around the vertical axis of the Bloch sphere.

To get rid of these not informative multiple rotations, the pseudospin vector
is usually treated in the rotating frame u, v, w. It rotates with the frequency
of electromagnetic field ω around axis 3, the axis w coincides with axis 3.

We also assume, that interaction is electric dipole interaction and H12 =
H∗

21 = −d⃗ · E⃗ (7.4). In this case the equations (7.17) – (7.19) can be re-written
as:

dR′
1(t)

dt
= −ω0R

′
2(t) (7.22)

dR′
2(t)

dt
= +ω0R

′
1(t) +

2dr
h̄
E0 cosωtR

′
3(t) (7.23)

dR′
3(t)

dt
= −2dr

h̄
E0 cosωtR

′
2(t) . (7.24)

Now we can make the coordinate transformation according to

R′
1(t) = u cosωt− v sinωt (7.25)

R′
2(t) = u sinωt+ v cosωt (7.26)

R′
3(t) = w . (7.27)

Substitution of (7.26) into (7.22) and replacing the derivative from (7.25) will
give us

u̇ cosωt− v̇ sinωt = (ω − ω0)u sinωt+ (ω − ω0)v cosωt (7.28)

u̇ sinωt+ v̇ cosωt = −(ω − ω0)u cosωt+ (ω − ω0)v sinωt+
2dr
h̄
E0 cosωtw

ẇ = −2dr
h̄
E0 cosωt sinωt u−

2dr
h̄
E0 cos

2 ωt v .
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Figure 7.3: Evolution of the Bloch vector R⃗′ under a resonance π-pulse, applied
to an atom initially found in the ground state.

Then, we can multiply (7.28) and (7.29) by cosωt and sinωt correspondingly
and add the results. We will get the Bloch equations in the rotating frame:

u̇ = (ω − ω0)v +
dr
h̄
E0 sin 2ωtw (7.29)

v̇ = −(ω − ω0)u+
dr
h̄
E0(1 + cos 2ωt)w (7.30)

ẇ = −dr
h̄
E0 sin 2ωt u−

dr
h̄
E0(1 + cos 2ωt) v . (7.31)

It is clear, that equations contain two types of terms - slowly varying a the
frequency of ω − ω0 and rapidly oscillating at the frequency 2ω. Usually, in
optical and radio-frequency regions the detuning is much smaller compared to
the frequency and rabidly oscillating terms can be neglected. If we neglect
these terms (which is called a rotating wave approximation) and introduced
the Rabi frequency ΩR

ΩR =
eE0

h̄

∫
ϕ∗
1(r⃗) r⃗ · ϵ⃗ ϕ2(r⃗)d

3r =
E0dr
h̄

(7.32)

we will finally get the simplified Bloch equations in the rotating frame:

u̇ = (ω − ω0)v (7.33)

v̇ = −(ω − ω0)u+ ΩRw (7.34)

ẇ = −ΩRv . (7.35)

Since the frame transformation is the unitary transformation, the length of the
pseudospin vector R⃗ = (u, v, w) remains 1. Similar to (7.20) one can re-write
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Figure 7.4: a) For zero detuning the pseudo-spin vector precesses in the v−w
plane. b) Evolution of pseudo-spin vector if the external field has zero intensity
ΩR, non-zero detuning ω0 − ω > 0 and initially the system is prepared in the
coherent superposition of two states by π/2 pulse.

equations in the form of one vector equation

dR⃗(t)

dt
= Ω⃗× R⃗(t) (7.36)

with vector
Ω⃗ = (−ΩR, 0, ω0 − ω) . (7.37)

Representation of excitation using pseudospin vector is very useful if one
considers pulse excitations. Figure 7.4 shows two examples for illustration.

The first example shows the situation when the field is tuned exactly with
resonance with zero detuning. In this case vector Ω will be directed along −u.
The pseudospin vector will rotate in the v−w crossing south and north poles.
The projection of the vector on w plane will describe regular Rabi oscillations.

Another case shown in Figure is the free evolution of atom excited in the
coherent superposition of two states (ϕ1 + ϕ2)/

√
2. In this case ω − ω0 ̸= 0,

but the field intensity equals zero ΩR = 0. Now the Bloch vector is oscillating
in the plane u− v and distribution of population does not change in time.

7.3 Ramsey method

One of the very efficient methods for excitation of atoms, ions and atomic
ensembles is a Ramsey method. It was suggested by Norman Ramsey. The
principle of this method is illustrated in Fig. 7.5. Ramsey method is used in
Cs primary frequency standards, atomic fountains, atomic interferometry as
well as in many other applications.

The excitation probability resulting from Ramsey excitation can be ob-
tained by different methods which give the same result (i) consideration using
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Figure 7.5: Excitation of atom/ion by the Ramsey method. a) Atom with
velocity v flies through two consequent interaction zones with the same field.
b) Atom at rest is illuminated by two consecutive field pulses at t1 and t2.

Bloch equations and Bloch vector representation (ii) using spectral represen-
tation (iii) considering atomic interferometry.

7.3.1 Bloch sphere representation

Figure 7.6: The probability to find atom in the excited state after interaction with

two short pulses τ ≪ T following after each other in interval T (solid curve (7.40)).

For comparison result of continuous excitation for time T is shown (dashed line).

Ramsey considered the general case of evolution of atomic system illumi-
nated by two pulses. After the first excitation atom turns in the coherent
superposition of states which will freely evolute between pulses. The second
pulse will again excite the atom and, dependent on the relative phase of atom
itself and the external field the population of the upper state will either further
increase or decrease. The probability to fine an atom in the excited state after
the second interaction equals :

p(τ + T + τ) ≡ |c2(τ + T + τ)|2 (7.38)

= 4
Ω2

R

Ω
′
R
2 sin

2 Ω
′
Rτ

2

(
cos

Ω
′
Rτ

2
cos

∆ωT

2
− ∆ω

Ω
′
R

sin
Ω

′
Rτ

2
sin

∆ωT

2

)2

,
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where ΩR is the Rabi frequency. The Ω′
R is the generalized Rabi frequency

Ω′
R ≡

√
Ω2

R +∆ω2 , (7.39)

and ∆ω is the frequency detuning. Initially atom is in the ground state. Here
T is the time interval between pulses and τ is the pulse duration. Close to the

Figure 7.7: Evolution of the pseudospin vector under excitation by two short π/2

pulses ΩRτ ≪ ∆ωT for different T .

a)-b) Excitation by the first π/2 pulse.

c1) free evolution for ∆ωT = 2π with the d1) consecutive excitation by the second

π/2 pulse. Atom is excited to the upper state (top of the fringe).

c2) free evolution for ∆ωT = 3/2π with the d2) consecutive excitation by the second

π/2 pulse. Atom is excited to the coherent superposition of states upper state (center

of the fringe wing).

c3) free evolution for ∆ωT = π with the d3) consecutive excitation by the second π/2

pulse. Atom is not excited (bottom of the fringe).

resonance (∆ω ≪ ΩR) one can approximate ΩR ≈ Ω
′
R and equation (7.38) is

simplified:

p(τ + T + τ) ≈ 1

2
sin2 ΩRτ [1 + cos 2π(ν − ν0)T ] . (7.40)

The maximal excitation of atom reaches at ΩRτ = π/2, i.e. by excitation of
atom by two consecutive π/2 pulses. The FWHM of the fringe equals :

∆ν =
1

2T
. (7.41)

The resolution of the Ramsey method is given by the time between pulses T .
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If field in two interaction zones has a certain phase difference ∆Φ, the
interference pattern will be shifted by :

∆νΦ
ν0

= − ∆Φ

2πν0T
. (7.42)

For the frequency standards this shift is undesirable, but for many other ap-
plications it can be very helpful. This method allows sensitive measurement
of the phase shift which can be caused by some external fields.

For simple representation of the Ramsey scheme we can implement the
Bloch vector representation shown in Fig. 7.7. Three cases are shown - exci-
tation to the top of the fringe, excitation to the center of the fringe flank and
no excitation (fringe bottom) as shown in Fig. 7.6.

7.3.2 Spectral representation

The very similar excitation picture can be obtained in the spectral domain. If
we look at the excitation field spectrum, it will consist of narrow fringes fit
under the envelope. The fringe width will be given by time interval T , while
the envelope width will be reversely proportional to the pulse width τ . An
example for two Gaussian pulses is shown in Fig. 7.8. For square pulses the
envelope function will be different.

Figure 7.8: Two Gaussian pulses and their Fourier transformation.

7.3.3 Atomic interferometry

One can consider the Ramsey scheme also as and atomic interference. The
first interaction will split the incoming atomic wave packet in two as shown in
Fig.7.9. After free propagation each of the atomic packets will be split again
and the interference between packets in the ground state (solid lines) and in
the excited state (dashed lines) takes place. Depending on the relative phase
of atom and the field either constructive or destructive interference pattern
will appear.
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Figure 7.9: Ramsey scheme treatment from the position of atomic interferometry.

Similar interferometric methods can be applied in optical region, where
atomic interferometers are widely used as sensitive gravimeters and allow tests
of fundamental theories. In optical domain the Ramsey setup should be mod-
ified because the wave packets will be significantly separated in space due to
large optical photon recoil.

All three mentioned treatments are equivalent.

7.4 Microwave frequency standards

7.4.1 Cesium beam clock

Atomic Cs beam clock is the most robust and till now most common primary
frequency standard. They are compact, robust and e.g. are installed in the
GPS satellites.

The operation principle of the Cs beam clocks is shown in Fig. 7.10. Atoms
are emitted from the oven have equal population of all magnetic sublevels.
To make Ramsey method feasible one should provide population difference by
strong gradient magnetic field. The polarizer magnet deflects atoms in the
desired state (e.g. (F = 3, mF = 0)) shown in Fig. 7.11.

To address the clock transition (mF = 0 ↔ m′
F = 0), the magnetic sub-

levels are split in the external homogenous magnetic field B orthogonal to
the drawing plane. Atoms fly through the first interaction region with the
microwave field which is excited in the U-shaped resonator. After the free
evolution (in commercial clock 20 cm in length, in state-of art clocks up to a
few meters) atoms fly through the next interaction zone of the same resonator.
Atoms in different states are separated by the polarizer magnet and then de-
tected. The error signal allow to lock external synthesizer (usually a stable
quartz oscillator) to the transition.
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Figure 7.10: Left: Cs beam clock schematics. Right: signal on the detector when

the synthesizer is scanned.

Figure 7.11: Ground state splitting in Cs and magnetic sublevels shift in external

magnetic field.

Typical short-time instability of the commercial Cs clocks HP5071A (“Ag-
ilent”) equals 5 × 10−12 for 1 s. The accuracy is limited by magnetic field
instability at the level of 10−12 − 10−13.

7.4.2 Cs fountain clock

Laser cooling of atoms allow to significantly reduce velocity of atoms in-
teracting with microwave field. Atom 133Cs has strong cycling transition
62S1/2(F = 4) ↔ 62P3/2(F

′ = 5) at 852 nm which allows efficient laser cooling
to a few µK regime.

Fig. 7.12 shows schematics of a Cs fountain clock. In contrast to a beam
clock, atoms pass the same interaction in the same microwave cavity after a
ballistic flight which lasts for approx. 1 s. Up to 107 atoms are laser cooled
by 6 laser beams. Atoms are prepared in the proper initial state and then are
launched by the same laser beams at the velocity of 4m/s. The radial velocity
corresponds to less then 1 cm/s.

Atoms pass two times through the same microwave cavity feeded by signal
from the most stable tunable oscillator (special quartz oscillator). After the
Ramsey excitation the population of the ground state components is detected
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Figure 7.12: Cs fountain clock schematics.

by laser methods.
Typical ballistic flight time is of 1 s which corresponds to the fringe width

of approx. 1Hz as shown in Fig. 7.13.

Figure 7.13: Left: interference fringes of FOM fountain clock for the transition

6S1/2(F = 3,mF = 0) ↔ 6S1/2(F
′ = 4,m′

F = 0) in 133Cs. Right: zoom in the

central fringe. Interrogating oscillator is locked to the flank of the fringe.

The ballistic region is isolated from magnetic fields and weak homogeneous
magnetic field is applied to select the 6S1/2(F = 3,mF = 0) and 6S1/2(F

′ =
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4,m′
F = 0) sublevels (similar to the beam apparatus). The measurement cycle

of the atomic fountain is about 1 s which means that the quartz oscillator
frequency can be corrected in respect to the fringe center each second. The
servo loop controls population on sublevels and correct oscillator frequency
correspondingly.

7.4.3 Stability of Cs clocks

The short time instability of the beam and fountain clock is defined by the
quartz oscillator. For times longer than 1 s the signal from Cs atoms will define
the stability of the apparatus.

As seen from Fig. 7.14, the stability of commercial beam clock is signifi-
cantly less stable compared to Cs fountain. For Cs beam clock HP5071A the
Allan deviation is at the level of 5× 10−13. For fountain clock the instability
drops as 1.3× τ−1/2 and reaches the flicker noise level of 2− 3× 10−16.

Most of the systematic effects are well studied. They are the Zeeman
shift in magnetic field, black body radiation and collisional shift. The best
fountain clock accuracy now reached 2× 10−16 and is limited by the quantum
projection noise. They are widely used for synthesis of SI second and in many
fundamental applications.

Figure 7.14: Left: Frequency measurement of an ultra-stable laser using commercial

Cs beam clock HP5071A and mobile fountain clock FOM. Right: Allan deviation

corresponding to the left plot. Growing of Allan deviation at higher averaging times

(¿100 s) is due to the thermal drift of laser frequency.



Lecture 8: Laser cooling of
atoms

Optical molasses. Doppler theory, Doppler limit. Subdoppler laser cooling:
Sisyphus method, polarization gradient cooling. Recoil limit. Evaporative cool-
ing. Applications. Bose-Einstein condensation of atomic gases.

Both spectral line width and the frequency of atomic transition depend on
coordinates and velocities of particles interacting with electromagnetic field.
It is very important for many applications to prepare particles in some defi-
nite initial state. Reduction of atomic velocity and localization of atoms in a
small finite volume allow to suppress the Doppler effect, to increase interaction
time with radiation and control external fields. Depending on how atoms are
prepared in the initial state and what interrogation method is implemented,
detected spectral line width can change by a few orders of magnitude as shown
in Fig. 8.1.

Figure 8.1: Optical transition in Ca atoms (λ = 657 nm) with the natural line width

of ∆ν ≈ 0.37 kHz measured using different methods a) Doppler broadened transition

in the gas cell ∆ν ≈ 2GHz. b) By saturation absorption spectroscopy ∆ν ≈ 150 kHz,

the line width is limitd by time-of-flight broadening c) Ramsey spectroscopy on laser-

cooled Ca atoms. One can measure the line width close to natural one.

Laser cooling is the most efficient method to suppress Doppler effect and
allows to increase the interaction time with particles.
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Laser cooling of neutral atoms was first suggested by Hänsch and Shawlow
(1975), while Weinland and Demelt suggested laser cooling of ions (1975).

8.1 Optical molasses

Let us take a two-level atom with the ground and excited state energies of
Eg and Ee correspondingly. It absorbs a photon from a laser field with the

wave vector k⃗ and the momentum of h̄k⃗. After absorption it spontaneously
emits a photon. Laser frequency is red detuned from the transition frequency
(Ee − Eg)/h. The photon momentum is transferred to the atom changing
atom’s momentum p⃗ = mv⃗. Assume that the Doppler shift ∆ν = p/(mλ) is
small in respect to the natural line width γ = 1/(2πτ), where τ is the life
time of the excited state. It means that ∆ν ≪ γ. Under this assumption the
transferred momentum ∆p⃗ = h̄k⃗ can be averaged out by a large number of
absorption and emission processes which results in a classical force F⃗ applied
to an atom. Spontaneously emitted photons will not contribute to the force
F⃗ , because they are emitted isotropically. The averaged force applied to an
atom from absorbed photons equals to :

F⃗ =
Ne

N

h̄k⃗

τ
, (8.1)

where Ne is the averaged number of atoms in the excited state, and N =
Ne +Ng is the total number of atoms (the sum of excited state atoms Ne and
ground state atoms Ng). The ratio Ne/N can be derived using the saturation
parameter S0 which will give us :

F⃗ =
h̄k⃗

2τ

S0

1 + S0 +
(

δν
γ/2

)2 . (8.2)

Here

S0 ≡
I

Isat
, (8.3)

where Isat is the saturation intensity corresponding to the case when the res-
onant radiation transfers 1/4 of the population to the excited level. It can be
written as

Isat =
2π2hcγ

3λ3
. (8.4)

Theory of a two-level system describes the population of the upper level as

Ne

N
=
S0

2

(γ/2)2

(1 + S0)(γ/2)2 + δν2
, (8.5)

which, after substitution, will give the result (8.2).
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If the intensity of a laser field is much lower compared to the saturation
intensity S0 ≪ 1, force (8.2) is described by a Lorentzian line shape. The
width of the Lorentzian approaches the natural line width.

For an atom moving with some velocity v⃗, the frequency detuning from
the resonance will depend on velocity due to the Doppler effect. In the atomic
frame, the detuning is equal to δν = ν−ν0−k⃗ ·v⃗/(2π). Let us consider an atom
moving with velocity v⃗ placed in the field formed by two counter-propagating
laser beams of equal intensity (e.g. a laser beam retro-reflected by a mirror).
If the field is weak and S0 ≪ 1, forces caused by two laser beams may be added
as following:

F⃗om =
h̄k⃗

2τ

 S0

1 + S0 + 4
(
ν − ν0 − k⃗·v⃗

2π

)2
/γ2

− S0

1 + S0 + 4
(
ν − ν0 +

k⃗·v⃗
2π

)2
/γ2


=

h̄k⃗

2τ
S0

16(ν − ν0)
k⃗·v⃗
2πγ2[

1 + S0 +
4(ν−ν0)2

γ2 +
(

k2v2

π2γ2

)]2
−
[
8(ν − ν0)

k⃗·v⃗
2πγ2

]2 . (8.6)

Fig. 8.2 shows the dependency of force acting on an atom in the case of
S0 = 0.3 if the laser frequency ν is shifted from the transition frequency ν0 by
one spectral line width γ o the red: ν − ν0 = −γ.

Figure 8.2: A force acing on an atom depending on is velocity. Force is caused by

absorption of photons from two counter-propagating laser fields of equal intensity.

The curve is given by(8.6) at S0 = 0.3 ν − ν0 = −γ.

At low velocity limit (v < γλ) one can neglect higher order terms ((k⃗·v⃗/γ2)2
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and higher) in (8.6). After reduction we get:

F⃗om =
8h̄k2S0(ν − ν0)

γ
(
1 + S0 +

4(ν−ν0)2

γ2

)2 v⃗ = αv⃗ . (8.7)

The resulting force acting on the atom linearly depends on velocity at low
velocity limit. If the laser frequency is red detuned in respect to the atomic
resonance (ν − ν0 < 0), one can find correspondence of the force Fom = −αv⃗
with a viscose friction. In other words, for atoms with velocity v⃗ the frequency
of the counter propagating beam is closer to the resonance due to the Doppler
effect. Atoms, moving in the electrical field of given configuration will be
decelerated by this viscose force. Due to this analogy, the expression “optical
molasses” is used to describe this process.

8.2 The Doppler limit

One can think, that in the optical molasses atoms will be continuously decel-
erated and they will stop reaching T = 0 limit. In this case one neglects the
fact, that even atoms at rest will absorb and emit photons. A recoil energy,
which will be transferred to the each atom in the absorption process is equal
to (+h̄2k2/2m), while in the emission process (−h̄2k2/2m). It will result in
heating which will correspond to the increase of the kinetic energy of each of
the atoms by 2h̄2k2/2m (at average).

If the system reaches equilibrium, heating and cooling rates should be equal
to each other :

Ėheat = −Ėcool . (8.8)

The heating rate Ėheat equivalent to the transferred energy per unit time, will
be proportional to the fraction of atom in the excited state for each of the
fields (8.5)and the decay rate 1/τ = 2πγ of the excited state.Hence

Ėheat = 2
(h̄k)2

2m

2πγ

2

2S0

1 + 2S0 + 4(ν − ν0)2/γ2
, (8.9)

where we took into account that the saturation parameter equals 2S0. The
cooling rate coming from the deceleration in optical molasses is equal to :

Ėcool =
∂

∂t

p2

2m
= ṗ

p

m
= F (v)v = −αv2 . (8.10)

Substituting (8.9), (8.10) and (8.7) in (8.8) and replacing v2 by the averaged
value ⟨v2⟩, we get:

m
⟨
v2
⟩
=
hγ

4

[1 + 2S0 + (2(ν − ν0)/γ
2)2]

2(ν − ν0)/γ
. (8.11)
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The right part of the equation (8.11) reaches minimum at ν−ν0 = γ/2. Taking
into account that m ⟨v2⟩ /2 = kBT/2, we get, that the minimal temperature
equals to:

TD =
hγ

2kB
=

h̄Γ

2kB
(Doppler limit) (8.12)

under condition S0 → 0. Temperature TD is the minimal temperature which
can be achieved using considered cooling mechanism. Since the cooling results
from the Doppler effect, the temperature limit is referred as to Doppler limit.

The Doppler limit in the three-dimensional case can be derived by similar
considerations. Although the cooling rate is the same as in one-dimensional
case, the heating rate will be three times higher, because in 3D case one should
take into account 6 laser field instead of two.At the other hand side, the tem-
perature is given by m ⟨v2⟩3D /2 = 3kBT/2. As a result, the Doppler limit
in the 3D case is the same, as in (8.12). E.g., for Cs atoms with the cooling
transition 6 2S1/2 – 6

2P3/2 (λ = 852 nm, γ = 5, 18MHz), the Doppler limit
equals 0, 12mK. For Ca atoms and corresponding cooling transition 41S0 –
41P1 (λ = 423 nm, γ = 34, 6 Hz) – 0, 83mK. Thermal velocity corresponding
to Doppler limit can be obtained from the equation 1/2mv2D = kBTD/2 :

vD =

√
hγ

2m
. (8.13)

For the examples given above vD,Cs = 8, 82 cm/s vD,Ca = 41, 5 cm/s.

8.3 Subdoppler cooling

Typical velocities of atoms cooled using the Doppler mechanism on strong
resonance transitions are in the range from a few cm/s to few tens cm/s.
Although it is much less compared to the thermal velocity of atoms (typically
300-500 m/s), they are still too high for many applications. For example, in
the atomic fountain clock atoms should interact with radiation within 1 s. To
load atoms in the shallow traps one also have to cool atoms to lower velocities.

For atoms possessing magnetic or hyperfine splitting of the ground state
(e.g. Cs, Rb, Tm, etc.) there are other mechanisms which allow to laser cool
atoms to even lower temperatures. Most frequency implemented is so called po-
larization gradient method were atoms are cooled in a laser field with spatially
varying polarization. The gradient can be formed by two counter-propagating
laser fields of opposite circular polarization or two counter-propagating laser
fields of orthogonal linear polarizations which is called “Sisyphus cooling”. We
will consider this mechanism as an example.

For Sisyphus laser cooling the atom should move in two laser fields of equal
amplitudes and frequencies, opposite wave vectors and perpendicular linear
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polarizations:

E⃗ = E0x̂ cos (ωt− kz) + E0ŷ cos (ωt+ kz)

= E0[(x̂+ ŷ) cosωt cos kz + (x̂− ŷ) sinωt sin kz] . (8.14)

Figure 8.3: Sisyphus cooling. a) Polarization distribution in the wave. b) Light shift

in the wave modulates energies on the ground state magnetic sublevels (mg = +1/2

mg = −1/2), which modulates interaction with laser field.

From (8.14) follows that at kz = 0 polarization of the field is linear and
oriented by 45◦ to the x axis as shown in Fig. 8.3 ). Polarization changes to
the orthogonal at λ/4 distance (kz = π/2), while at kz = π/4 (z = λ/8) it is
circular.

The simplest model is the two-level atom with a resonance transition J =
1/2 → J = 3/2. It can be other transition with different multiplicity. For
the mentioned transition the magnetic sublevels m±1/2 of the ground state are
periodically shifted which vary in space due to the polarization gradient as
shown in Fig. 8.3 b). Assume that atom is initially in the ground state with
mg = −1/2, which has the lowest energy at z = λ/8. If atom is moving along
z, it climbs the potential hill which results in losses of its kinetic energy. If laser
field polarization at this point will change to σ+, the atom will be optically
pumped to the mg = +1/2 state because of optical pumping via me = +1/2
state. Moving along z axis atoms again looses its kinetic energy climbing the
next hill where is will be again optically pumped by σ− radiation tomg = −1/2
state (via me = −1/2 level). In analogy to the ancient Greek hero Sisyphus,
who was punished by gods and had to roll the huge stone up to the hill again
and again, this mechanism is called “Sisyphus”. The best regime is reached in
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the case if the averaged time of optical pumping necessary to transfer atoms
to the next sublevel equals the travelling time of λ/2 distance.

Usually, in the experiment the polarizations are chosen to be σ+/σ− and
slightly different mechanism plays a role. In this case the resulting polarization
will be always linear, but rotating around the axis. Cooling will be reached by
periodical re-distribution of population among the sublevels which will increase
probability to absorb photon from the light field counter propagating to the
atomic motion.

The minimal temperature which can be reached using subdoppler mecha-
nism reaches the recoil limit

kBT > Er = (h̄k)2/2m. (8.15)

For Cs atoms in 3D optical molasses the achievable temperature is 25µK,
which is much lower than the Doppler limit 0, 12mK, but still slightly higher
compared to (8.15).

The recoil limit is difficult to overcome since it results from only one single
emission of a resonance photon. Still, there are approaches allowing to laser
cool atoms to even lower temperatures (e.g. by using EIT and Raman cooling),
but in this case atom should not directly interact with the resonance laser
field scattering photons. These exotic methods have not find applications in
frequency standards.

One can reach low temperatures also by implementation of the second stage
Doppler cooling, but using narrower transition. It is useful for atoms which do
not have magnetic splitting of the ground state: 20Mg, 40Ca, 88Sr all of them
widely used in frequency standards. Using transitions of ∼ 1Hz line width one
can push the Doppler limit to microkelvin regime.



Lecture 9: Traps for neutral
atoms

Magnetic dipole trap, optical dipole trap, optical lattices. Magneto-optical
trap.

For many applications including precision measurements it is important
not only to cool atoms to lower temperatures, but also to trap them at some
local position in pace for longer time. For this purpose one can use electric,
magnetic, gravitational and light forces which influence external degrees of
freedom (coordinates and velocities) of the atom, ion or molecule and localize
them at some position.

There are some limitations for stable traps. For some volume without
charges ∆Φ = 0, where Φ is the electrostatic potential (if the charge density

equals 0, the Maxwellian equations will give divE⃗ = ∇⃗ · E⃗ = ∇⃗ · ∇⃗Φ = ∆Φ =
ρ/ε0 = 0). From this relation one can conclude the it is impossible to configure
electric charges such way, that in the free space between them a minimum or
maximum of electric potential. This conclusion is usually called as the Irnshaw
theorem. It means that is is impossible to build a stable electrostatic trap for
ions.

It is also possible to prove, that in space free of charges and currents there
are neither maximum of electric field, nor maximum of magnetic field. It means
that it is not possible to build neither electro-static, nor magneto-static trap
for atoms in the lowest energetic state, which always will move towards the
maximum of electric of magnetic field. Ketterle and Pritchard proofed this
statement for any combination of magnetic and electric fields.

Atomic and molecular ions can be trapped into ion traps since the Irnshaw
theorem does not pose any limitation for using rotating field configurations
when positive and negative field gradients are changing with high frequency.
Since the electrostatic interactions are given by the electric field strength F⃗ =
qE⃗, the potential well is quite deep and can reach a few electronvolts. Recalling
that 1 eV=̂11 600K, it is clear that this depth is well enough to trap ions at
room temperatures and at much higher temperatures as well. Ion traps will
be considered in the next lectures.

Forces, acting on neutral atoms and molecules are much weaker compared
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to electromagnetic (Coulomb) interactions. Most regularly these forces are due
to interaction of electric field gradient with an induced dipole moment of the
particle or due to interaction of magnetic field with the magnetic moment of
the particle.

Unperturbed atoms cannot possess a permanent electric moment due to
T-invariance. It is only possible to trap atoms using interaction with induced
dipole moment of atoms.

9.1 Magnetic dipole trap

It is not difficult to prepare atoms in an internal state with a permanent
magnetic moment which can interact with magnetic field. The force acting
on the atom with the magnetic moment µ (projected on the magnetic field
direction) will be given as

F = −µ
−→
∇B . (9.1)

External magnetic field results in the shift of energy levels. If external
magnetic field gradient is applied, a particle with magnetic moment will fill
a force. The lowest energy level of any atom will always shift down in the
external magnetic field. It means that any atom in the lowest energy state will
move towards maximum of magnetic field. Atoms aiming for the maximum of
magnetic field are called “high-field seekers”.

Atoms in the excited states may move also to the minimum of the magnetic
field (of course they can move to the maximum of the field too, depending on
the state). Atoms aiming to the minimum of magnetic field are called as “low-
field seekers”. Since it is impossible to have a maximum of the magnetic field,
only low filed seekers can be trapped in the minimum of the field.

One of the simplest configurations of the magnetic traps if the trap con-
sisting of two coils in anti-Helmholtz configuration (Fig. 9.1). Coils build up a
radial symmetric magnetic field in the plane x – y if z axis is aligned along the
coil axis. Close to the center the magnetic field vector changes linearly (Bx =
{∂Bx/∂x} ·x,By = {∂By/∂y} ·y,Bz = {∂Bz/∂z} · z). Taking into account the

equation div · B⃗ = ∇⃗ · B⃗(r⃗) = 0 we get 2∂Bx/∂x = 2∂By/∂y = −∂Bz/∂z. It
shows that the field gradient along z-axis is always twice as large as for x and
y axis, but has an opposite sign.

Neutral atoms were trapped in such a trap in 1985 by H. Metcalf and it
was the first demonstration of trapping neutral atoms. An important disad-
vantage of such trap is the possibility of a Mayorana spin-flip at trap center
where magnetic field is essentially zero. Crossing the zero field point magnetic
moment of the atom can flip and atoms will turn into high-field seekers which
will result in the repulsive force from the trap center. Atoms will be lost from
the trap and cannot be returned back.
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Figure 9.1: Magnetic quadrupole trap consisting of two current loops in the anti-

Helmholtz configuration.

Figure 9.2: Ioffe-Pritchard trap consisting of four current lines and two coils. Ar-

rows show direction of current.

One of the possible solutions is the implementation of the Ioffe-Proitchard
trap shown in Fig. 9.2. Such trap possesses the minimum of the magnetic field
as well, but the field does not turn to zero at its minimum. Such systems are
widely used for production of quantum degenerative gases (Bose-Einstein and
Fermi condensates).

Both these systems have very shallow potential gap and can be imple-
mented only for trapping neutral particles at very low temperatures (less than
1 K).
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9.2 Optical dipole trap

Atoms without magnetic moment can be trapped using an induced electric
dipole moment in the external field. High field strength and gradients can be
obtained in the focus of a laser beam.

If a two-level system undergoes interaction with the resonance laser field,
the energy of its states will change due to the dynamic Stark shift. If the
frequency of the field is red detuned from the atomic transition frequency, the
ground state energy will be reduced and the energy of the excited state will
grow as shown in Fig. 9.3. Accordingly, if the laser is blue detuned, the picture
will change to the opposite. Depending of the frequency detuning, the atomic
dipole moment will oscillate either in phase or out of phase with the external
field. Thus, atom will be either pulled into the field maximum, or be pushed
out of it.

Figure 9.3: Interaction of a two-level atom with a spatially inhomogeneous laser

field tuned close to the resonance frequency. It results in the spatial-dependent shift

of the atomic levels.

The potential energy of an atom in the laser beam with the electric field
amplitude E0 is given by:

Wdip(r, z) = −6πε0c
3

ω2
0

Γ(ω2
0 − ω2)

(ω2
0 − ω2)2 + ω6Γ2/ω4

0

E4
0

4

≈ −3πε0c
3

4ω3
0

[
Γ

ω0 − ω
+

Γ

ω0 + ω

]
E2

0 ≈ h̄

8

Γ2

ω − ω0

I(r, z)

Isat
. (9.2)
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Figure 9.4: Optical dipole traps with red (a) and blue (b) detuning. Trap with

red detuning can be build by focussing a laser beam with a regular field distribution

(fundamental Gaussian mode). Dipole trap with blue detuning can be built by e.g.

focussing a radially symmetrical Laggerr-Gaussian mode LG01 possessing a donut

field distribution.

Here we made an assumption that the frequency detuning is much larger than
the natural line width (ω − ω0 ≫ Γ). We also made a rotating wave approxi-
mation and neglected the second term in the square brackets. We also used the
expression for the laser field intensity I(r, z) = (ε0c/2)E

2
0 and the saturation

intensity Isat from (8.4).
The simplest optical dipole trap is the red detuned focused Gaussian laser

beam (Fig. 9.4 a). Such a beam has a three-dimensional intensity maximum in
focus. For the Gaussian beam we have

I(r, z) =
2P

πw2
0(1 +

z2

z2R
)
exp

[
− 2r2

w0(1 +
z2

z2R
)

]
≈ 2P

πw2
0

(
1− 2r2

w2
0

− z2

z2R

)
, (9.3)

where P is the power of the Gaussian beam with radius w0, while zR = πw0/λ
is the Rayleigh length. Approximation (9.3) is valid for small distances from
the beam waist zf < zR r < w0. In this case both radial and axial directions
are well approximated by harmonic potentials.

Contrary to the force in the optical molasses, the dipole force in the optical
dipole trap does not saturate with the laser power. Spontaneous emission
caused by absorption of photons in the dipole trap causes heating which is
proportional to the number of scattered photons. A scattering rate Γsc which
is the number of scattered photons per unit time is given by:

Γsc =
Pabs

h̄ω
= −2

h̄
ℑm{α}E

2
0

4
≈ Γ3

8(ω − ω0)2

(
ω

ω0

)3
I

Isat
. (9.4)

The scattering rate Γsc becomes less for large detunings ω − ω0 since it re-
duces as (ω − ω0)

−2 (see (9.4)). In practice, most regularly used are optical
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dipole traps with very large destining to the red from atomic resonance (Far
of Resonance Traps or FORT).

Traps with the blue detuned laser field provide less scattering rate since
atoms are accumulated in the area with low, close to zero intensity. A blue
detuned optical dipole trap (e.g.a donut-shape Lagerr-Gaussian mode LG01 or
an optical lattice) provides similar potential depth as the red detuned TEM00

trap. Blue detuned traps are more preferable for frequency standards since
the dynamic Stark shift is less as in the red detuned traps where atoms are
accumulated in the intensity maximum.

9.3 Magneto-optical trap

In optical molasses atoms are cooled to very low velocities. Force, acting on
atoms is similar to the viscose force which decelerates atoms, but does not
attract them (trap them) to some distinct point in space. The trapping force
can be created by applying an inhomogeneous magnetic field.

Let us consider an atom with the ground state energy Eg and orbital mo-
mentum J = 0. For the excited state corresponding values are Ee and J = 1
as shown in Fig. 9.5. For example, such simple level scheme can be found in
alkali-earth atoms (Ca, Sr, etc.) In this case the energy of the ground state
can be treated as constant in magnetic field, while the excited state will be
split in three magnetic sublevels (mJ = 0, ±1). Energies of mJ = ±1 mag-
netic sublevels linearly depend on magnetic field with the same coefficient (but
with opposite sign). Assume, that the magnetic field B changes linearly if the
coordinate z:

Bz(z) = bz. (9.5)

Zeeman shift of the sublevels with mJ ̸= 0 is given by

∆E(z) = ±gJµBbz . (9.6)

Due to this dependency the space-dependent detuning is formed:

δν = ν − ν0 ∓
v

λ
∓ gJµB

h
bz , (9.7)

where gJ is the Landé factor of the excited state and µB – the Bohr magneton
(µB/h = 1.4 · 1010Hz/T). Using the laser field propagating along z-axis one
can excite transitions to the mJ = 1 mJ = −1 levels using σ+ and σ− circular
polarization, correspondingly. Doing calculations similar to (8.7), but with the
space-dependent term in the equation (9.7), we get:

Fz(z) = −Dz, (9.8)
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Figure 9.5: Energy levels of atom in a magneto-optical trap.

Figure 9.6: Configuration of a magneto-optical trap.

where the constant D is equal to :

D ≈ 8µBbkS0(ν − ν0)

γ
(
1 + S0 +

4(ν−ν0)2

γ2

)2 . (9.9)

Due to this force a parabolic potential V (z) = Dz2/2 is formed which traps
atoms. If both laser beams have the same intensity, the trap center will coincide
with zero of magnetic field. The resulting force which takes into account both
the viscose force of optical molasses and the retrieving force from quadratic
potential (magnetic field inhomogeneity) equals to

Fz(z, v) = −Dz − αv. (9.10)
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This is the equation of motion for the harmonic oscillator. Atom plays a role

of a mass m oscillating with the eigenfrequency ω0 =
√

D
m

and the damping

constant of Γ = α
m
.

To trap atoms in three-dimensional space on has to extend the given picture
to all three coordinates maintaining proper polarization relations as shown in
Fig. 9.6. Three-dimensional magnetic field minimum with linear dependency
similar to (9.5) can be formed by two coils in anti-Helmholtz configuration as
shown in Fig. 9.1. For regular MOTs the gradient is on the order of 0.05T/m
to 0.5T/m.

Example. Calculate the eigenfrequency ω0 and damping constant Γ in the
trap for 40Ca atoms. The magnetic field gradient equals b = 0.1T/m, the
frequency detuning equals ω − ω0 = Γ/2, the cooling wavelength 423 nm.

Since the atomic mass equals m = 40 · 1.66 × 10−27 kg we get using (9.9)
(8.7): ω0 ≈ 2π · 2, 4 kHz and Γ ≈ 1.56× 105 s−1. It is clear that the oscillation
will be damped much faster as one oscillation period.

Loading of a magneto-optical trap. Maximal velocity of atoms which can
be trapped in a magneto-optical trap equals vc ≈ (2Fmaxr/m)1/2 = (h̄kγr/m)1/2,
where r – is the radius of the trapping light beam. Typically, it is around
vc = 30m/s. Atoms with the velocities v < vc can be trapped directly from
the low-velocity wing of Maxwellian distribution even without additional decel-
eration. More efficient method is to load atoms from a Zeeman slower where
atoms are decelerated in one dimension using combination of resonant light
and magnetic field. The equation describing the number of atoms in a MOT
is:

dN

dt
= Rc −

N

τMOT

− βN2 , (9.11)

where Rc is the capturing rate and τMOT – an averaged life time of atom in a
MOT. The second term is responsible for collisions with the background gas,
while the third term describes collisions of atoms with each other. Equation
(9.11) can be easily solved is one neglects the last term which is important
only at high concentration of atoms. We will get:

N(t) = (N(0)−RcτMOT)e
−t/τMOT +RcτMOT. (9.12)

The loading curve shown in Fig. 9.7 approaches to the equilibrium state N(t→
∞) = RcτMOT for the typical time τMOT. If initially the MOT is empty N(0) =
0, the loading curve is described by the following curve :

N(t) = RcτMOT(1− e−t/τMOT). (9.13)

Large MOT can contain up to N ≫ 107 atoms at the density of ρ >
1010 at/cm3 which can be used in many different applications after switching
of MOT beams.
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Figure 9.7: Loading curves of Ca MOT and approximation according to (9.13).

Using a repumper laser the life time increases from τMOT = 19ms (b) to τMOT =

83ms (a).

9.4 Optical lattice

The optical lattice in an extension of the optical dipole trap. In contrast to
the optical dipole trap formed by a focused laser beam with only one intensity
maximum/minimum, the optical lattice is an interference pattern of two and
more laser beams which possesses multiple intensity maxima/minima.

As example, consider two counter-propagating laser beams of similar polar-
ization and intensity. The interference will result in a stationary distribution
of intensity :

E⃗ = E0ϵ̂ cos(ωt− kz) + E0ϵ̂ cos(ωt+ kz) (9.14)

= 2E0ϵ̂ cos(kz) cos(ωt).

The dynamic Stark shift is proportional to E2 and, as follows from the ex-
pression is periodically varying with the coordinate z with node and antinodes
separated by λ/4. Low-energy atoms can be trapped in potential wells and lo-
calize them in the volume much smaller compared to the wavelength. One can
also build two- and three-dimensional lattice by intersection of a few standing
waves, e.g. as shown in Fig. 9.8. In this case the potential wells look as shown
in Fig. 9.9.

Typically, by loading the optical lattice by very cold atoms the popula-
tion of a unit well turns to be very low. In applications to optical frequency
standards optical lattices provide very long interaction times and very tight
confinement of atoms which is important to reduce the Doppler effect. By
proper tuning the wavelength of the optical lattice (“magic wavelength”) the
influence of the lattice potential on the clock transition can be turned to zero
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Figure 9.8: Two-dimensional optical lattice. M – mirror, R – phase plate.

Figure 9.9: Distribution of the potential in the two-dimensional optical lattice.

in the first order. This happens in the case if the dynamic Stark shift of the
lower and upper clock state become equal.



Lecture 10: Paul trap for ions

Traps for charged particles. Linear Paul trap. Equation of motion, Mathieu
equations. Floquet-type solutions. Pseudopotential. Frequencies of micro- and
macromotion. 3D Paul trap. Trap loading.

10.1 Traps for charged particles

The best reference for a frequency standard is an isolated medium at full rest,
which possesses a strong absorption line with high Q-factor. Neutral atoms
only weakly interact with external fields which mean that one needs high field
intensities to tightly localize and trap atoms. High fields will, in turn, cause
strong perturbation of the clock transition.

Ions, which are the charged particles, are easier to control, since the Coulomb
interaction with electric field is very strong and allows to tightly localize atoms
using so-called ion traps. Ions can be trapped for very long time (up to a few
months) and they have extremely narrow transitions. One can study a single
ion which is a perfect candidate for an isolated system since it does not in-
teract with other particles. One can laser cool atoms using regular methods
of laser cooling and reach very high localization and low velocities. It is also
very important that ions can be sympathetically cooled, i.e. one atom can be
cooled via Coloumb interaction by another, laser cooled atom.

One can localize charged particles by combination of electric and magnetic
fields. As follows from the Irnshaw theorem, it is impossible to trap particles
by static fields and alternating fields are necessary. There are two major types
of traps:

• A Paul trap, where particles are trapped in inhomogeneous alternating
electric field

• A Penning trap, where atoms are trapped in combination of static mag-
netic field and alternating electric field.

W. Paul was awarded a Nobel prise for invention of a trap configuration which
is now referred as to the Paul trap.
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10.2 Paul trap

Consider an electric field E⃗(r⃗) given by potential Φ(r⃗) inside the trap volume.
The field interacts with an ion with a charge q = +e =1,602 · 10−19As. A
force, acting on an ion will be given by

F⃗ (r⃗) = eE⃗(r⃗) = −e · ∇⃗Φ(r⃗) , (10.1)

acting towards the trap center. Here the operator ∇⃗ = (∂/∂x, ∂/∂y, ∂/∂z) is
used to find the field gradient. It is desirable, that the force will linearly depend
on the distance form the trap center r⃗ as F⃗ (r) ∝ r⃗. In this case particles will
undergo harmonic oscillations. In this case a scalar potential Φ(x, y, z) should
have a quadratic dependency on coordinates

Φ = const · (ax2 + by2 + cz2) , (10.2)

where the constant is given by boundary conditions. Using the Laplace equa-
tion ∆Φ = ∇2 = 0 for a space free of charges, we get the restriction for the
coefficients a, b c defining the potential in (10.2):

a+ b+ c = 0 . (10.3)

We will consider two cases for coefficients (10.3):

a = 1, b = −1, c = 0 (linear quadrupole trap) (10.4)

and
a = b = 1, c = −2 (three-dimensional trap). (10.5)

10.3 Linear quadrupole trap

The first combination of coefficients (10.4) describes the trap configuration
with the potential independent on the z-coordinate:

Φ = const · (x2 − y2) . (10.6)

It is a two-dimensional quadrupole potential shown in Fig. 10.1.
Such two-dimensional potential (10.6) can be formed by a system of four

hyperbolic electrodes with a negative potential applied to upper and lower
electrodes and positive - to the right and left electrodes (or vice versa) see
Fig. 10.1. Assume, that he potential difference between the electrodes equals
Φ0. The constant from (10.2), (10.6) can be obtained from the boundary
condition Φ(r0) = Φ0/2 = const · r20, where 2r0 is the distance between two
opposite electrodes. We get const = Φ0/2r

2
0. The electric field is calculated
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Figure 10.1: Two-dimensional qudrupole potential in the x – y plane can be produced

by four hyperbolic electrodes.

Figure 10.2: The potential of the linear quadrupole trap has a saddle-like shape

rotating around z-axis..

from (10.1):

Ex =
Φ0

r20
x, Ey = −Φ0

r20
y, Ez = 0. (10.7)

In such a field the particle with the charge +e will be repelled from the positive
electrodes towards x = 0 position. Ion will harmonically oscillate along x-axis.
At the other hand, it will be attracted to the negative electrode along the
y-axis. According to (10.6) the potential will have a saddle-like shape. It
has a minimum along x and maximum along y (10.2). Changing of polarity
will reverse the picture: the ion will be repelled from y-electrodes and will be
attracted to x ones.

To trap ions in both directions, the potential of the electrode pairs should
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periodically change. It can be done by adding an alternating component Vac
at frequency ω to the constant bias voltage applied to electrodes Udc:

Φ0 = Udc − Vac cosωt. (10.8)

The potential shown in Fig. 10.2 will rotate at the frequency ω around z-axis.
Although it is not obvious that periodical focussing and defocussing along x
and y axes should result in trapping of an ion. Indeed, the averaged force
seems to be zero.

As we will show later, it is not true: An efficient trapping force directed
to the trap center appears. It comes from inhomogeneity of the trapping
potential. Before deriving this force and corresponding pseudopotential let us
consider the equation of motion for the trapped ion.

10.4 Mathieu equations

Consider an ion placed in the trap with the potential given by (10.8). Coordi-
nates and velocities of an ion will be given by the following equations

Fx(t) = mẍ(t) = eE(x) cosωt =
e

r20
(Udc − Vac cosωt)x

Fy(t) = mÿ(t) = eE(y) cosωt = − e

r20
(Udc − Vac cosωt)y , (10.9)

where ẍ(t) is d2x/dt2. Substituting (10.7) and introducing dimensionless pa-
rameters

τ ≡ ω

2
t, a ≡ 4eUdc

mω2r20
, q ≡ 2eVac

mω2r20
, (10.10)

we get differential equations first analyzed by a French mathematician E.Mathieu:

d2x(τ)

dτ 2
+ (a− 2q cos 2τ)x = 0 (10.11)

and
d2y(τ)

dτ 2
− (a− 2q cos 2τ)y = 0. (10.12)

The difficulty in this type of equations are the periodically changing coeffi-
cients. One can use this periodicity to analyze equations, namely, trying to
find the solutions looking like that:

Fµ(τ) = eiµτP (τ) , (10.13)

which are called Floquet-type solutions. Here P (τ) should be a periodical
function with the same period as coefficients in (10.11) equal to π. If the
solution is aperiodic, it can be represented as a combination of independent
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Floquet solutions Fµ(τ) and Fµ(−τ). Parameter µ in the exponent depends
only on coefficients a and q. In general case, presence of the exponent will
result in an exponential growth of the amplitude which corresponds to non-
stable regime. But, only in the case if the parameter µ becomes a real value
µ = β ∈ Real, the solution will describe oscillations of the ions in a finite space
around the equilibrium point. That will be the stable solution.

For applications, the oscillation amplitude should be smaller, that the in-
ner size of the trap, otherwise ion will hit the wall. Since the characteristic
exponent is the function of a and q, one has to calculate the dependency a(q)
for given β = f(a, q) which can be done by different mathematical methods.

One of the examples for discussed dependency a(q) is shown in Fig. 10.3.
Shadowed areas correspond to stable areas for the following parameter range
0 ≤ β ≤ 1, 1 ≤ β ≤ 2, 2 ≤ β ≤ 3. Mathematically, the integer numbers of
β are the special cases. For example, the condition β = 1 defines the sharp
threshold between two separate stability areas. It is not critical in practice,
where the trap parameters are selected in such way, that parameters will lay
safely within stability ranges.

Figure 10.3: Dependencies a(q) for β = f(a, q), calculated for 0 ≤ β ≤ 3 with the

step equal to 0.2 (lines). There are three stability ranges on the diagram (shadowed

areas. Note, that the diagram is symmetrical, i.e. a(q) = a(−q).

Stable trapping of an ion is given only by trap parameters a q and does not
depend on initial conditions. For stable trapping of a ion in two- and three-
dimensional trap all parameters ai and qi (i = x, y) should independently fall
in stability regions. For two-dimensional trap the stability diagram is a joint
plot shown in Fig. 10.4. For the x axis one should use +a, +q and for the y axis
– parameters (−a), (−q) using the fact that a(q) = a(−q). The stable regime
happens when both stability regions for x and y overlap. The first stability
region is shown in details in Fig. 10.5 for different values of β.
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Figure 10.4: Joint diagram for both coordinates x and y similar to Fig. 10.3. There

are a few joint stability regions where individual diagrams overlap.

Figure 10.5: The first joint stability region (shadowed area) in a two-dimensional

Paul trap.

10.5 Pseudopotential

Here we will study the origin of a trapping force appearing in the Paul trap.
Assume, that initially ion is positioned away from the trap center at some
position x̂. First, for simplicity, consider the ion motion in a homogeneous
oscillating electric field with the amplitude Ê and frequency ω. The equation
of motion will look like

mẍ(t) = eÊ(x) cosωt (10.14)
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and (for convenience) assuming the initial condition ẋ(0) = 0 we will get the
dependency

x(t) = x̂− eÊ

mω2
cosωt. (10.15)

The ion oscillates at the frequency of the applied field, but the phase of its
oscillations differs for π from the applied field which is clear from minus sign.
This process is called micromotion. The phase lag is very important and will
result in the trapping force in an inhomogeneous field.

Now we will assume that the field is spatially inhomogeneous and is dis-
tributed according to Fig. 10.2. The ion is oscillating around some point x̂ > 0.
If it is accelerated outwards the trap center, it should be closer to the trap cen-
ter x < x̂. In this region the field is less than at x̂. Otherwise, when the ion
is further away from the center x > x̂ the field is stronger and the ion is ac-
celerated towards the trap center. It means that there will be some non-zero
effective force which will pull the ion towards the trap center. This force can
defined via so-called pseudopotential. Assuming that x(t) − x̂ << x̂ one can
expand field in the power series:

F (t) = eE(x̂) cosωt+ e
dE(x̂)

dx
(x− x̂) cosωt+ · · ·

≈ eE(x̂) cosωt− e2E(x̂)

mω2

dE(x̂)

dx
cos2 ωt . (10.16)

Here we used (10.15) for x(t) − x̂ difference. After averaging of (10.16), its
first term becomes zero, while the average of the second term is

Fav(x̂) = −e
2E(x̂)

2mω2

dE(x̂)

dx
. (10.17)

One can define a pseudopotential Ψpseudo corresponding to this force. In our
2D case it will be given by

Ψpseudo(x̂, ŷ) =
eE2(x̂, ŷ)

4mω2
. (10.18)

The ion motion will consist of micromotion on the frequency of the driving
field and much slower oscillations in the pseudopotential which are called as
secular motion. The secular radial oscillation frequency ωr can be calculated
from the ion kinetic energy which should correspond to the potential (10.18):

eΨpseudo =
1

2
mω2

r(x
2 + y2). (10.19)

For simplicity assume Udc = 0. Now we will substitute E2(x̂, ŷ) = E2
x + E2

y

from (10.7) in (10.18), which will give us ωr ≈ eVac/(
√
2mωr20).
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The described above quadrupole trap restricts the ion motion only on x−y
plane, ions can freely move along z-axis. There are different methods to restrict
motion of the ion in z direction, for example, to place additional ring electrodes
with positive repelling potential or to use segmented rods with the outer parts
at a constant positive potential as shown in Fig. 10.6).

Figure 10.6: Linear trap configurations with the radial potential similar to shown

in Fig. 10.1. Traps have additional ring electrodes (a) or segmented rods (b) for

axial confinement.

10.6 Three-dimensional Paul trap.

Another solution of the equation (10.5) which is widely used in practice results
in the three-dimensional potential:

Φ =
Φ0

x20 + y20 + 2z20
· (x2 + y2 − 2z2), (10.20)

which can be produced with the potential surfaces of the following shape

x2 + y2 − 2z2 ≡ r2 − 2z2 = ±r20. (10.21)

The positive sign corresponds to an z-axially symmetrical hyperbolic surface
which can be manufactured in practice as a ring electrode with the inner radius
r0 as shown in Fig. 10.7. The negative sign corresponds to a two hyperboloid
branches separated by a distance 2z0 =

√
2r0.

Electric field in radial direction (Er) and axial direction (Ez) differ by the
coefficient −2. The potential in cylindric coordinates will be given as

Φ(r, z) =
Udc + Vac cosωt

r20 + 2z20
(r2 − 2z2) , (10.22)

where r0 as z0 are defined in Fig. 10.7. Parameters a and q (10.10) for the
radial (ar, qr) and axial (az, qz) directions will differ by factor −2:

az = −2ar ≡ a, qz = −2qr ≡ q. (10.23)
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Figure 10.7: Three-dimensional Paul trap.

Figure 10.8: The first stability region in the three-dimensional Paul trap.

One can plot the stability diagram a(q) by overlapping the axial and radial
diagrams as shown in Fig. 10.8. The diagrams differ by a scaling factor of −2
(10.23). The first stability region becomes asymmetrical which differs from the
two-dimensional case (Fig. 10.5).

In experiment only the first stability range is used. As example, an ion
trap for trapping single 171Yb+ ions at PTB has a radius of r0 = 0, 7mm at
the driving voltage Vac = 500V with a frequency of ω = 2π · 16MHz. The
trap parameters are qz = 0.11 and az ≈ 2 × 10−3 (10.10), (10.23)), which
corresponds to the first stability region.

The pseudopotential Ψpseudo(r̂, ẑ) in the three-dimensional case can be cal-
culated similar to (10.18):

Ψpseudo(r̂, ẑ) =
Udc

2r20
(r̂2 − 2ẑ2) +

eV 2
ac

4mω2r40
(r̂2 + 4ẑ2)

=
mω2

16e
[(q2r + 2ar)r̂

2 + 4(q2r − ar)ẑ
2] . (10.24)

Parameters eΨpseudo(r0, 0) and eΨpseudo(r0/
√
2, 0) are the potential depths in

the radial and axial directions. The depth in axial direction is two times larger
as in the axial one. One can make the potential symmetrical fulfilling the
condition ar = q2r/2.



Lecture 11: Penning trap for
ions and ion cooling

Penning trap for charged particles. Magnetron, cyclotron and axial frequencies.
Precision mass comparison in the Penning trap. Synthesis of anti-hydrogen
atoms in Penning traps. Cooling of ions. Doppler and sideband cooling. Sym-
pathetic cooling. Lamb-Dicke regime.

11.1 Penning trap

Configuration of electrodes in the Penning trap is the same as in the 3D Paul
trap, but the radio-frequency field is absent (Vac = 0). It means that ions
will repel from the end cap electrodes (along z direction). In the x – y plane
the same potential will push ions out of the trap center. For trapping ions a
strong magnetic field is applied along z-axis. Equation of electron motion can
be written as

m¨⃗r = eE⃗(r⃗) + e ˙⃗r × B⃗, which is equivalent (11.1)

mẍ = e(Er + ẏBz)

mÿ = e(Er − ẋBz)

mz̈ = eEz.

The electrical field components can be calculated from the potential Φ (10.22).
The last equation describes ion oscillations with the frequency of

ω2
z =

4eUdc

m(r20 + 2z20)
, (11.2)

which does not depend on Bz.
If only magnetic field is applied to a moving particle, it will perform a cir-

cular motion in the plane orthogonal to the field. The frequency of oscillations
will be given by

ωc =
e

m
Bz (cyclotron frequncy). (11.3)

The cyclotron frequency can be obtained from the fact that the Lorentz
forces provides the centripetal acceleration evBz = mv2/r or eBz = mωc. In
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the trap there is also the electric field E⃗r perpendicular to the magnetic field
B⃗z. Two fields will cause the motion of the particle along the ring orbit in
the x− y plane around z-axis which is called magnetron motion. A balance of
electric and Lorentz force will define the magnetron frequency of this motion:
evBz = eωmrBz = eEr. The magnetron frequency does not depend on the
charge or mass of the particle, but depends only on electric and magnetic
fields:

ωm =
Er

r Bz

(magnetron frequency). (11.4)

For a typical Penning trap parameters Bz ≈ 1− 5T and Uac ≈ 10− 100V
the magnetron frequency will be of a few tens of kHz, the axial frequency
ωz – of a few hundred of kHz and the cyclotron frequency ωc – a few MHz.
Typically the following relation is fulfilled

ωc ≫ ωz ≫ ωm. (11.5)

The ion trajectory in this case is a superposition of all three oscillation types as
shown in Fig. 11.1. All oscillation are nearly independent and the trajectory
consists of (i) fast cyclotron motion around the magnetic field axis (11.3),
oscillations along the magnetic field axis (11.2) and a small drift along a circular
trajectory calculated from (11.4).

Figure 11.1: Ion trajectory in the Penning trap. It is an orbit with epicycles in the

x – y plane with oscillations along the z axis. Here ωc = 10ωz = 100ωm.

But, for other trap parameters the cyclotron motion can be of the same
size as the magneton and picture will be different from the one shown in the
Figure.
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11.1.1 Rigorous solution

One can rigorously solve joint differential equations (11.1) for x and y:

ẍ =
e

m

(
2Udc

r20 + 2z20
x+ ẏBz

)
=
ω2
z

2
x+ ωcẏ (11.6)

ÿ =
e

m

(
2Udc

r20 + 2z20
y − ẋBz

)
=
ω2
z

2
x− ωcẋ. (11.7)

Let us add equation (11.6) to equation (11.7) multiplied by i. Also we introduce
complex parameter r = x + iy. After this procedure we will get a simplified
equation r̈ = ω2

zr/2 − iωcṙ. It can be solved by substitution r = r0 exp(iωt)
which will result in a square equation ω2 − ωωc − ω2

z/2 = 0 for ω. Two roots
of this equation will give us frequencies

ω′
c =

ωc

2
+

√
ω2
c

4
− ω2

z

2
(modified cyclotron frequency) (11.8)

ωm =
ωc

2
−
√
ω2
c

4
− ω2

z

2
(magnetron frequency). (11.9)

If the value under the square root is positive (ωc ≥
√
2ωz), we will get two

frequencies called as modified cyclotron frequency ω′
c and magnetron frequency

ωm. Modification of the original cyclotron frequency comes from the presence
of electric field.

One can also get important relations by (i) adding the equations (11.8) and
(11.9) or (ii) by squaring them and then adding them. As a result we get:

ωc = ω′
c + ωm (11.10)

ω2
c = ω′2

c + ω2
m + ω2

z . (11.11)

Both these frequencies are used to calculate the cyclotron frequency (11.3)
which is very important for precision ion mass comparison.

For a cloud of ions in the Penning trap, fast magnetron motion along
(E⃗ × B⃗) results in Doppler effect second order. For larger cloud size the effect
is larger. Penning traps are not often used for optical or microwave frequency
standards and are inferior to Paul traps. But they become very important tool
for many fundamental applications like precision mass comparison, determina-
tion of anomalous magnetic moment of electron and producing antihydrogen
atoms.

11.1.2 Ion energies in the Penning trap.

Consider an single-charged ion (m = 100 a.u.) moving in the Paul trap with
the potential difference of 10 V, B = 5T and r = 1mm. Which energy
corresponds to each type of ion motion?
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(i) The axial movement is a pure harmonic oscillatory motion and its energy
is equally distributed between kinetic and potential energy. The maximal
energy in the trap can reach Epot ≈ 5 eV = 8 · 10−19 J.

(ii) The cyclotron orbit has very small radius while the ion moves at very
high speed. The energy is mostly kinetic and equals eωcBzr

2 ≈ 510−19 J for
an orbit of r = 0.5mm.

(iii) The energy of magnetron motion is mostly potential. The ion mass
equals 1, 6 · 10−25 kg the magnetron velocity will be equal v ≈ 1000m/s (11.4).
The kinetic energy equals Ekin = 1/2mv2 ≈ 8 · 10−20 J which is much less
compared to the potential energy (i).

The latter relation shows that the total energy reduces with the reduction
of the radius of magnetron motion. Collisions will result to increasing the
radius and, in the end, losses from the trap.

11.1.3 Interactions between trapped ions

All considered equations for Paul and Peening traps are valid only for the case
if only one ion is trapped. If trap contains many atoms, the ion interaction will
change the behavior of the ion motion. Ions will strongly interact by Coloumb
interaction. If the ion energy is small compared to interaction energy, they
will form crystalline structures. Very impressive structures can be obtained in
linear Paul traps where field is nearly zero close to the axis. Cold ions will
form a linear crystal which is similar to beads on the necklace as shown in
Fig.11.2. More ions will form spirals or crystalline clouds which can contain
up to 105 ions.

Figure 11.2: Spontaneous radiation of 8 ions trapped in a linear quadrupole Paul

trap.

Because of joint oscillations, the spectrum of ion oscillation will contain
new frequencies which will correspond to oscillatory eigenmodes. If the trap
potential is purely harmonic, ions can not be heated by the driving field. But
typically the potential is not perfectly harmonic and ions are heated by the
field which is called radio-frequency heating. In this case the different degrees
of freedom become dependent and the energy can be transferred between them.
The spectrum of ion oscillations becomes complicated as shown in Fig. 11.3)
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Figure 11.3: Resonance losses of the ion trap dependent on driving field frequency.

The losses result from ion heating.

11.2 Lamb-Dicke regime

Excitation of optical transition in optical region has certain advantages for
applications in frequency standard. But, motion of the atoms or ions result in
the spectral line broadening due to the Doppler effect ∆ν, which is proportional
to the frequency ν. For the particle temperature of only 1mK the effect can
reach a few MHz.

R.H. Dicke found out that if the particle is restricted in a small vol-
ume much smaller than the wavelength of the excitation field, contribution
of Doppler effect vanishes. Let us show this on an example of ion in the trap.

In the trap ion oscillates. Assume that in the laboratory frame the ion is
illuminated by a monochromatic field E(t) = E0 sinωt. In the frame of the
ion the excitation field will turn into phase-modulated field due to the Doppler
effect

E(t) = E0 sin(ωt+ δ sinωmt) . (11.12)

We know, that the spectrum of the phase-modulated field consists of a car-
rier frequency ω and a number of equidistant side bands ω ± nωm with n =
12, . . . ,∞. If the phase modulation is not deep (δ ≡ ∆ω/ωm ≪ 1) one can take
into account only the carrier, the sidebands become negligibly small (1.27). Let
us re-write this condition

δ ≡ ∆ω

ωm

=
ωvmax

ωmc
=
ωxmax

c
=

2πxmax

λ
< 1 , (11.13)

where we use the expression for the Doppler shift ∆ω = vmaxω/c and the energy
relation for harmonic oscillations: mv2max/2 = Dx2max/2 or v2max = ω2

mx
2
max.

Consider an ion which oscillations are restricted in the volume of d = 2xmax

size. We see, that if the Lamb-Dicke condition

d <
λ

π
(Lamb-Dicke criterium), (11.14)
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is fulfilled, then according to (11.13) the condition δ < 1 is also fulfilled.
The more strict condition (11.14) is fulfilled, the less the Doppler broaden-

ing of the spectral line. Radiation will be mostly absorbed ion the carrier and
not in the sidebands. This criterium is also valid for any particle restricted in
the volume of the size less than the wavelength of the excitation field. It is
important in ion traps, optical lattices and hydrogen masers.

11.3 Trap loading

Loading of the ion trap significantly differs from loading of a magneto-optical
trap because of absence of any dissipative force. It means, that the particle
energy should be less than the energy barrier of the trap itself and the trap
cannot be loaded from outside. It is similar to the case that the planet cannot
be trapped to the stable orbit if it comes from infinity. To be trappable, the
body should experience some collision or be born close to the potential well
center.

There are a few methods how to load ions in the trap. The most usual
one is the ionization of neutral atoms directly inside the trap, for example, by
electron bombardment. Neutral particles easily penetrate to the trap center
without interaction with magnetic and electric field. After impact with the
electron, neutral particle becomes ionized, and if its energy is low enough,
would be trapped in the ion trap. The similar method is photo-ionization
which is isotope-selective and causes less induced charges on the trap walls.

This method cannot be used if one traps anti-particles or exotic isotopes
from the accelerator ring. In this case one can lower the potential barrier at
one side of the trap, then load the trap, and, as soon as ions are inside, lift
up the barrier again. Of course, it should be done very fast, before ions are
reflected from the other side of the trap.

11.4 Ion cooling

Ion traps can trap ions at high energies up to 2 eV which corresponds to tem-
peratures of 20 000K. Even the second order Doppler effect of such particles
will be huge ∆ν/ν = −v2/(2c2) = −(mv2/2)/(mc2) ≈ −2 eV ≈ −10−11, which
is too much for any applications in the frequency standards. Since ions in the
ion trap are nearly completely isolated, thermalization is inefficient and ions
should be cooled by some other methods. Isolation from the environment has
also a lot of advantages: As soon as ions are cooled, they will not be heated
for the long time.

We should agree about notation “temperature” which is appied in this case
to a single ion. We will stick to the standard agreement that temperature T
will define the energy of ion per degree of freedom : Ei = kT/2.
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11.4.1 Energy dissipation by an electric circuit

Ions, oscillating in a trap, induce mirror charges and corresponding currents
in the electrodes. If electrodes are shunted by a resistor, ion will loose energy
and its oscillations will dissipate. In the limit, ion temperature will be given
by shunt resistor temperature.

Dissipation rate of ion in the trap with the shunt circuit. Assume,
that an ion with mass m and the charge q oscillates along z-axis at a distance
of 2z0 from each other as shown in Fig. 10.7. Resistance of the shunt is R.
Derive the energy dissipation rate of an ion.

If ion with velocity v is moving for the distance ds in the electric field E,
the energy gain/loss will be equal to dWz = qEds.

Corresponding power equals dWz/dt = qEds/dt ≈ qUv/(2z0). Current
flowing between electrodes can be derived from the following relation IU =
qUv/(2z0), which means I = qv/(2z0). This approximation corresponds to the
case if the trap electrodes can be considered as plane capacitor.

The equivalent electric circuit is a current source connected to the plane
capacitor via resistor R. The averaged power scattered on resistor equals
⟨I2R⟩. In the case if the capacitance is small R ≪ 1/(ωzC), the averaged
power, dissipated by an ion can be calculated as

−dWz

dt
= ⟨I2R⟩ = q2RWz

4mz20
, (11.15)

where we used the relation Wz = m⟨v2z⟩ for the ion kinetic energy. Solution
of this equation described the exponential power dissipation which the time
constant of

t0 =
4mz20
q2R

. (11.16)

This cooling method can be used for any ion. Usually, the trap electrodes are
shunted by resistor which is cooled in liquid nitrogen or helium. It allows to
cool ions to temperatures down to 1 K. For example, such cooling is used for
positron cooling for production of anti-hydrogen.

11.4.2 Buffer gas cooling

The easiest way to cool atoms in the trap is to add some buffer gas in the
vacuum volume. Since the trap depth is very high, collisions with a trapped
ion will take energy from it without knocking it out of the trap. Each collision
between the ion and buffer gas atom will reduce the energy of the ion by

∆Ekin

Ekin

=
mbuffer

mion

. (11.17)

One can cool ions to temperatures down to 4K if cryogenic trap is used.
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11.4.3 Doppler laser cooling

First who suggested laser cooling of ions in the trap were Weinland and Demelt
in 1975. The Doppler cooling method is very similar to laser cooling of atoms
in optical molasses. It relies on absorption of the photon which the energy
lower than energy of emitted one (at average). The energy difference is taken
from kinetic energy of a particle.

For ions, the typical resonance lines are quite strong (natural line width
10MHz) and allow for efficient ion cooling. Laser cooling of an ion is technically
less challenging compared to a free particle cooling, because cooling only from
one direction is enough. Preferably ion will absorb photons when it moves
opposite to a k-vector of a red-detuned cooling laser field and will loose energy
correspondingly. Typically, only one retro-reflected laser beam is used with
direction intersects with all degrees of freedom of moving ion.

Using this method one can reach the lowest temperature corresponding
to the Doppler limit kTD ≡ hγ/2 (see. (8.12)). The minimal temperature is
achieved when the frequency detuning is half of the resonance line width γ/2.
Typically, one can reach temperatures of TD ≈ 1mK. This method can be
used both in Paul and Penning traps.

If many ions are trapped, the heating due to Coloumb repulsion and corre-
sponding increased potential inharmonicity will increase the heating rate which
will result in higher temperatures. There are other heating mechanisms result-
ing from interaction of ions with patch charges on electrodes and influence of
electrical noises of electrodes which may additionally heat ions.

The Doppler temperature is typically enough to obtain crystalline struc-
tures in the trap as shown in Fig. 11.2. Still, for many applications the tem-
perature is not low enough.

Sideband cooling

The Doppler mechanism for ions and neutral particles are very similar. The
sub-Doppler mechanisms, in turn, differ very much. For neutral particles one
uses Sisyphus or polarization gradient methods where atom either climb the
potential lattice formed due to the dynamical Stark shift or are cooled due to
redistribution of population.

For ions sub-Doppler cooling relies on the fact, that an ion is trapped
in the potential well and populates some vibrational levels of this trap. If
potential is harmonic, its energy levels will be equidistant as shown in Fig. 11.4.
Each of the electronic energy levels can be treated as a number of sublevels
separated by the harmonic trap eigenfrequency. In other words, the oscillating
ion will emit a phase-modulated field with the modulation frequency of the
oscillations. The spectrum can be approximated by ν0 ± kνm, where ν0 is the
ion electronic transition frequency, νm is the oscillation frequency and k is the
positive integer.
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One can excite optical transitions between different vibrational sublevels.
If a vibrational level number is the same for upper and lower electronic level
(k = 0), the ion motion will not change after absorption of the photon. But,
if ion will absorb or emit photon such that k ̸= 0, the same number of quanta
of motion will be absorbed or emitted (which means that the ion will vibrate
stronger or weaker in the trap). Assume, that ion is illuminated by a red-
detuned laser field resonant with the next vibrational sublevels with k = −1 (as
shown in Fig. 11.4). The emission will preferably take place at the resonance
frequency ν0. It means, that each absorption-emission event will take one
quantum of vibrational energy from the ion. After multiple processes, the ion
will be cooled to the ground vibrational state. The emission pattern of an ion
will change, as shown in the experimental plot of Fig. 11.5. If an ion is in the
ground vibrational state, the absorption with state with k = −1 is not possible
any more and the corresponding side band becomes strongly suppressed.

Figure 11.4: Sideband cooling of an ion.

Using this method one can cool ions to 10-100µK. Sideband cooling is very
important to reach the Lamb-Dicke regime in an ion trap, for quantum ma-
nipulations and quantum computation algorithms, where ion should populate
a state with well-defined vibrational quantum number.

Sympathetic cooling.

One can cool ion using another sparring ion which is cooled by regular methods
of laser cooling. Since both ions strongly interact by Coulomb interaction,
taking energy from sparring ion will reduce kinetic energy or the clock ion
as well. Typically, this method is used if the clock ion does not have strong
transitions of they are not accessible by lasers. For example, one can cool
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Figure 11.5: 198Hg+ ion absorption spectrum at 281.5 nm after sideband cooling.

The red detuned sideband becomes strongly suppressed if the ion is cooled to the

vibrational ground state.

He+ ions by collisions with laser cooled Be+ ions. Recently, an Al+ clock ion
was cooled by implementation of sympathetic cooling by Mg+ ion down to
vibrational ground state and the world best result in optical clock accuracy
was achieved (fractional uncertainty < 10−17).

11.5 Detection of trapped ions

There are a few methods allowing detection of trapped ions in the trap. The
most straightforward one is destructive and relies on opening the trap and de-
tecting escaping ions by, e.g., electron channel detectors (channeltrons). An-
other method is to detect ion oscillations by sensitive measuring potential dif-
ference at electrodes. The mirror charge of moving ion will induce current in in
the attach circuit which allows to detect the ion and measure its temperature.

11.5.1 Optical registration

Most regular way to detect ions in the trap (as well as neutral particles) is
an optical detection. If ion is illuminated by a resonant laser field it will
scatter photons which can be detected by a sensitive optical system (large NA
objective lens and sensitive CCD camera). Typically, a single ion can scatter
106 − 107 photons per second which can be readily detected with the detector
having quantum efficiency of 10−2. Once can image ions, study crystalline
structures and ion chemistry.

The resonance laser is usually the same as the laser used for cooling.



Lecture 12: Methods of
quantum logic in optical clocks

Precision measurements in the traps, electron shelving. Elements of quantum
logic in ion traps. Motional degrees of freedom. CNOT gate. Cirac-Zoller gate.
Information transfer between clock and cooling ions. Precision spectroscopy
using quantum logic.

Ions are widely used as frequency standards because of the following reasons

• one can trap single ion which does not interact with other ions

• ion is trapped in the zero of electric potential: no external fields can
perturb clock transitions

• ions can be laser cooled to the Lamb-Dicke regime

• ions possess very high-Q transitions in the microwave and optical regions

Ions, which are most successfully used in optical frequency standards are Hg+,
Al+, Yb+, Sr+.

Trapped ions are also widely used as elements of quantum logic — the
most successive and impressive results were obtained using ions. Here are the
reasons why they are also very attractive for this field

• one can address individual ions by tight focussing of light on it

• the interaction between two ions in the trap is strong, while the isolation
from the environment is nearly perfect. This Coulomb interaction is used
for quantum gates which is the basic unit of the quantum circuit

• one can store quantum information and increase number of trapped ions
(scalability)

For applications in quantum logic circuits one-electron Be+, Mg+ and Ca+ ions
are used.

Here we will consider some modern methods of precision measurements in
the ion traps and some elements of quantum logic.
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12.1 Electron shelving

Single trapped ions are widely used in optical clocks and demonstrate unprece-
dented stability and accuracy due to nearly perfect isolation from environment.
But, for a clock transition with a typical life time of excited level of 1 s, the
photon scattering rate cannot be higher than 0.5 photon per second which is
lower than any detection level. The question arises: how to efficiently detect
weak clock transition in a trapped ion?

To solve this problem the method of electron shelving is widely used. It
can be used for ions which possess the V -scheme of levels with the common
ground ground state for the weak clock and the strong cooling transition. An
example of such scheme is shown in Fig. 12.1.

Figure 12.1: Coupled atomic level V-scheme used for detection of quantum jumps.

Left: population oscillates between S and P levels, the scattered photons are readily

detected. Right: quantum jump occur. The population is transferred to D level. Ion

does not scatter photons.

Consider an ion which is illuminated simultaneously by two laser fields
resonant with clock and cooling transition. Since the cooling S-P transition is
very strong, the population will promptly oscillate between the ground state S
and the upper state P scattering photons with high a rate up to 108 s−1. This
radiation is readily detectable with sensitive optics as described in Sec.11.5.1.
But, if the clock transition takes place, atom ceases scattering photons, because
the ground state is depleted and the cooling laser cannot excite the strong
transition.

It means, that for the time interval which lasts on the order of the D state
life time (e.g. 1 s), the luminescence from the ion is not observed. A typical
plot with the quantum jumps is shown in Fig. 12.2.

Using this method one can record the clock transition line. For larger de-
tunings from the clock transition the quantum jump rate is low, it increases by
approaching the resonance, reaches the maximum at exact resonance and then
again decreases. Plotting the histogram one will record the clock transition
spectral line shape.

The electron shelving (or quantum jumps) method is similar to quantum
amplification, since the ion excitation can be detected with the nearly unit
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Figure 12.2: Dark periods in the luminescence spectrum of In+ ion in the trap

corresponding to transitions in the long-living excited state.

Figure 12.3: Clock transition in an ion recorded by quantum jumps method. Corre-

sponding frequency stability.

probability. But, contrary to photomultiplier tubes and channel amplifiers,
there amplification takes place directly in the ion.

12.2 Elements of quantum logic in ion traps

Ion in the ion trap with a long-lived (optical) transition can be considered as
an isolated two-level two-level system which represents a nearly perfect Q-bit,
i.e., and element of quantum information which can be represented as

|ψ⟩ = α|1⟩+ β|2⟩ . (12.1)

Using electromagnetic pulses which drive this transition one can perform dif-
ferent single Q-bit operations like, e.g. SWAP, by implementation a π-pulse:

α|1⟩+ β|2⟩ → β|1⟩+ α|2⟩ . (12.2)
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One can implement infinite number of different one Q-bit operations on the

vector
α
β

which can be represented by a unitary operator (gate) 2×2 matrix.

E.g. the SWAP operation is represented by the matrix

X =
0 1
1 0

.

Indeed, X
α
β

=
β
α

.

A regularly implemented gate is the Hagamard gate which can be treated
and a π/2-pulse acting on a two-level system:

H =
1√
2

1 1
1 −1

.

Still, similar to classical computation, it is not possible to perform any
computation algorithm by using only one q-bit gate. We know, that in classical
computation any logical element (AND, OR, NOT, etc.) can be implemented
by different combinations of only one gate NAND.

Similar to that any quantum algorithm can be implemented if one can
efficiently operate so-called CNOT gate (controlled NOT). Usually it is denoted
as shown in Fig. 12.4.

Figure 12.4: Two Q-bit CNOT gate.

CNOT gate consists of two Q-bits: one called control Q-bit which does not
change during operation and one target Q-bit which may be changed depending
on the state of the first Q-bit. The name “controlled NOT” describes the
operation: one tries to make the NOT gate on the second target Q-bit. If the
control Q-bit is in the state |1⟩, the operation is successful, if it is in the state
|0⟩ nothing happens. This statement can be given by a raw of transformations

|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩ ,

where the first Q-bit is the control one and the second - is target.
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The gate can be also written as 4× 4 matrix:

UCNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

In 1995 Cirac and Zoller suggested how one can implement CNOT gate
using ions in the linear Paul trap and then in 2002 the first CNOT gate was
demonstrated in R. Blatt group using ultracold Ca+ ions.

Another important gate is the phase gate

Uphase =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

. (12.3)

Transformation from the phase gate to the CNOT gate can be easily per-
formed using two Hagamard gates on each of the Q-bits:

UCNOT =
1√
2

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

· Uphase ·

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

1√
2
, (12.4)

which can be readily technically implemented.

12.3 Implementation of Cirac-Zoller gate

12.3.1 States of an ion

In the Cirac-Zoller gate two type of states are implemented: internal states
(electronic or hyperfine transitions) or external motional states in the trap as
shown in Fig. 12.5. We will denote internal logical states of an ion as |g⟩ , |e⟩.
These are the working states which we would like to perform a quantum gate
at.

The second set of states which will be used is external motional states
|0⟩ , |0⟩.

For the Cirac-Zoller gate one also needs the auxiliary level |aux⟩ as shown
in Fig.12.6.

12.3.2 2π rotation of the spin-1/2 system

We know from the basics of quantum mechanics, that the rotation operation
of the system possessing the spin Sz is given by

D(ϕ) = exp(− i

h̄
Szϕ) . (12.5)
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Figure 12.5: Internal and motional states on a single ion in the trap.

Figure 12.6: Ion states necessary for implementation of the Cirac-Zoller gate.

If we apply this operator with Sz (spin-1/2 system) to the state |α⟩ = |+⟩⟨+|α⟩+
|−⟩⟨−|α⟩ we will get

exp(− i

h̄
Szϕ)|α⟩ = exp

(
−iϕ

2

)
|+⟩⟨+|α⟩+ exp

(
−iϕ

2

)
|−⟩⟨−|α⟩ (12.6)

we get the following important relation

|α⟩2π = −|α⟩ . (12.7)
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This relation is illustrated in Fig.12.6. The 2π operation on the auxiliary level
using the red vibrational sideband will result in

|g⟩|0⟩ → |g⟩|0⟩
|e⟩|0⟩ → |e⟩|0⟩
|g⟩|1⟩ → −|g⟩|1⟩
|e⟩|1⟩ → |e⟩|1⟩ . (12.8)

12.3.3 Collective vibrational modes

If two ions are sitting in the potential well of the trap and interact with each
other via Coulomb interaction, they experience collective vibrational modes.
The number of modes along one of the coordinates coincide with the number
of ions. An example is shown in Fig. 12.7.

It means, that if one of the ions will absorb a blue detuned photon resonance
with one of the modes, the shared oscillations will start and for both ions the
number of level in the potential well will increase (Fig. 12.5). And vice versa,
if one shines red detuned laser, the number of shared quanta will decrease.

Figure 12.7: Example of collective vibrational modes for two ions (Al+, Be+).

An important message: if the ion(s) is(are) in the true ground state |g⟩|0⟩,
it cannot absorb a red detuned laser since there is no |e⟩| − 1⟩ level. This is
widely used in ion logic schemes since it allows to address only one of the two
lower levels in the ladder.

12.3.4 CNOT gate

We will consider how the CNOT gate can be implemented on two ions in the
ion trap which are initially cooled to the vibrational ground state. Now we can
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write the states and wavefuntions which correspond to operations illustrated
in Fig. 12.8.

Initially the system is prepared in the state ψ0:

|g⟩c|g⟩t|0⟩
|g⟩c|e⟩t|0⟩
|e⟩c|g⟩t|0⟩
|e⟩c|e⟩t|0⟩

(12.9)

The first operation is a π-pulse on the red sideband applied to the control

Figure 12.8: Operation sequence for the Cirac-Zoller gate.

gate. It will excite a collective oscillations of the both ions:

|g⟩c|g⟩t|0⟩ → |g⟩c|g⟩t|0⟩
|g⟩c|e⟩t|0⟩ → |g⟩c|e⟩t|0⟩
|e⟩c|g⟩t|0⟩ → −i|g⟩c|g⟩t|1⟩
|e⟩c|e⟩t|0⟩ → −i|q⟩c|e⟩t|1⟩

(12.10)
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Additionally, it will transfer population from the excited state of the control
ion to its ground state with the corresponding phase which can be calculated
from (12.5).

The second operation is the 2π-pulse on the target ion which will change
the phase of the particular state |g⟩t|1⟩:

|g⟩c|g⟩t|0⟩ → |g⟩c|g⟩t|0⟩
|g⟩c|e⟩t|0⟩ → |g⟩c|e⟩t|0⟩

−i|g⟩c|g⟩t|1⟩ → +i|g⟩c|g⟩t|1⟩
−i|q⟩c|e⟩t|1⟩ → −i|q⟩c|e⟩t|1⟩

(12.11)

The last operation is again the π-pulse on the red sideband applied to the
control ion:

|g⟩c|g⟩t|0⟩ → |g⟩c|g⟩t|0⟩
|g⟩c|e⟩t|0⟩ → |g⟩c|e⟩t|0⟩

+i|g⟩c|g⟩t|1⟩ → |e⟩c|g⟩t|0⟩
−i|q⟩c|e⟩t|1⟩ → −|e⟩c|e⟩t|0⟩

(12.12)

We see that the system is returned back to the initial state ψ0 for all states
except the last one which changed the sign.

As we see from (12.3) it corresponds to the phase gate which can be con-
verted to CNOT gate by two simple Hagamard operations (12.4).

12.4 Information transfer between clock and

cooling ions. Precision spectroscopy us-

ing quantum logic.

One of the most successful implementation of quantum logic algorithms in
practice is the recent demonstration of reading the clock transition in Al+ ion
with the help of an auxiliary sparring ion Be+. Aluminum ion has very narrow
and attractive clock transition at 267 nm. One of the most important advan-
tages is that this transition is barely perturbed by the black body radiation.

The problem with Al+ ion is that its strong cooling transition is at 167 nm
which cannot be excited with modern lasers. It means that the electron shelv-
ing scheme cannot be implemented here ( see Fig. 12.1). The problem of cooling
can be overcome by implementation of the sparring ion (e.g. Be+), but how
then to read the information that the clock transition is exited?
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Figure 12.9: Clock transition in Al+ and sympathetic cooling of this ion in the
trap with Be+

D. Weiland suggested to implement quantum algorithm to detect this tran-
sition which is illustrated in Fig. 12.10. Situation is very similar to the one
described above when we considered a CNOT gate.

The initial state of the system is :

|ψ0⟩ = |g⟩L |g⟩C |0⟩ . (12.13)

which means that both a logical ion L and the clock ion C are in the ground
states (electronic and vibrational).

After excitation of the clock transition the clock ion will be excited to the
coherent superposition with amplitudes α and β (Fig. 12.10 b)):

|ψ0⟩ → |ψ1⟩ = |g⟩L [α|g⟩C + β|e⟩C ] |0⟩
= |g⟩L [α|g⟩C |0⟩+ β|e⟩C |0⟩] . (12.14)

Next, a blue-detunedπ-pulse is applied to the clock ion which will excited the
common emotional excitation of both ions. It will influence only the ground
state |g⟩C , since there is no resonance for |e⟩C (|g⟩C | − 1⟩). ,

|ψ1⟩ → |ψ2⟩ = | ↑⟩L [α| ↑⟩C |1⟩M + β| ↑⟩C |0⟩M ]

= | ↓⟩L | ↑⟩C [α |1⟩M + β |0⟩M ] . (12.15)

The π-pulse exciting the electronic state simultaneously transferred the quan-
tum information to the logic ion via Coloumb interaction (common oscilla-
tions). The amplitude of the motional sates will be equal to the excitation
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Figure 12.10: Excitation of the clock ion C and reading by a logical ion L. a) – the

initial state b) – excitation of the clock ion c) – π-pulse on the blue sideband applied

to the clock ion d) – π-pulse at the red sideband .

amplitudes in the clock ion. Now one can transfer these motional amplitudes
to the amplitudes of the electronic states in the logic ion by applying a red-
detuned π-pulse:

|ψ2⟩ → |ψfinal⟩ = [α |e⟩L + β |g⟩L] |e⟩C |0⟩ . (12.16)

Now one can readily read values α2 and β2 by the regular shelving method
(projecting the states of the logic ion on the |g⟩ , |e⟩) basis. It allows to measure
the excitation probability of the clock ion.

Using this method, D. Wineland and co-workers reached extremely high
frequency reproducibility of < 10−17 and set the best known to date restriction
to the possible variation of the fine structure constant α.



Lecture 13: Optical frequency
measurements

Frequency conversions in optical domain. Second harmonic generation, phase
modulation. Frequency dividers and frequency chains. Femtosecond mode-
locked lasers. Time domain and frequency domain representation of femtosec-
ond pulse train. Phase and group velocities in the laser cavities, carrier enve-
lope offset frequency. Spectral broadening in nonlinear photonic crystal fiber.
Nonlinear interferometer. Measuring absolute frequency of laser radiation.

As we know from the first lecture, increasing the carrier frequency ν0 will in
general case increase the accuracy of the clock which is defined by the resonance
quality factor Q = ν/∆ν. Optical clocks possessing high carrier frequency of
up to 1015Hz demonstrate unprecedented stability and reproducibility as was
explained in previous lectures. One can synthesize a highly stable electro-
magnetic wave at a few particular optical frequencies using different atomic
samples.

Still, for the practical use this situation is not favorable. We know, that
most of the communications, time and frequency signal distribution take place
in radio- and microwave frequency domains covering 1 kHz-10GHz. In this
domain signals can be easily converted, counted, mixed and multiplied using
regular semiconductors. From approx. 40GHz the semiconductors stop work-
ing. It means that for optical clock the clockwork device, which will help to
convert signals and transfer stability to the radio-frequency domain or or other
optical frequencies was missing (see Fig. 1.7).

Since late 80-s there were a lot of attempts to built a system which will
serve as a clockwork for optical clocks and a few so called frequency chains
have been built in the number of leading scientific centers. The basics of any
frequency conversion lays in non-linear processes (the second harmonic gener-
ation, sum frequency generation, the four-wave mixing, parametric downcon-
version) which allow to transfer stability from one frequency range to another.

The real breakthrough in this field was achieved by J. Hall and T.W. Hänsch
by invention of a frequency comb. Here we will describe some of the processes
involved and study the operation of frequency comb.
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13.1 Introduction to some optical non-linear

processes

Non-linearities in the optical domain are very weak and strong fields are nec-
essary to reach strong effects. Non linear processes result from non-linear
medium response — its polarization P (E). In linear approximation P ∝ E.
In the general case P (E) is the non-linear function and can be written as power
series of E

P (E) = ϵ0
[
χ(1)E + χ(2)E2 + χ(3)E3 + · · ·

]
. (13.1)

Here χ(i) are the non-linear susceptibility coefficients which are responsible for
the process of the ith order. The square contribution in (??) is the tensor

Pi = ϵ0

3∑
j,k=1

χ
(2)
i,j,kEjEk i, j, k = 1, 2, 3 . (13.2)

If two waves with amplitudes E1 and E2 are superimposed the result is

(E1 + E2)
2 = E2

01 cos
2 ω1t+ 2E01E02 cosω1t cosω2t+ E2

02 cos
2 ω2t

=
E2

01

2
(1− cos 2ω1t) +

E2
02

2
(1− cos 2ω2t)

+ E01E02[cos(ω2 − ω1)t− cos(ω2 + ω1)t] , (13.3)

where the terms with doubled frequencies, sum and differential frequencies
appear.

The expression (13.3) presents three types of non-linear processes. One can
treat this equation as if two photons with the frequencies ω1 and ω2 disappear,
and one photon with the frequency ω3 appear. If ω1 = ω2, the process is called
second harmonic generation. If the frequencies are not equal it is called sum
frequency generation.

If one reads (13.3), one photon ω3 will born two photons which is called
optical parametric generation.

The third process is optical heterodyning when the photon ω1 −ω2 is born.
To satisfy the energy conservation law two other photons should appear: ω1+
ω2 = ω1 + (−ω2 + ω2) + ω2 = (ω1 − ω2) + 2ω2 .

The four wave mixing involves three photons and is described by the cubic
term in (13.1). If the condition of phase synchronism is fulfilled, three photons
with frequencies ω1, ω2, ω3 will be converted to other frequencies. An important
combination for this discussion is ω4 = ω1 + ω2 − ω3.

Please note, that due to parity and momentum conservation reasons the
two-photon processes may take place only with anisotropic media (some crys-
tals), while in anisotropic materials (glass, gas, liquid) they are very inefficient.
On the other hand, the three-photon process does not have this restriction and
can take place in isotropic media as well.
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13.2 Ultrashort pulses and femtosecond laser

basics

The heart of a frequency comb is a femtosecond laser which basics of operation
will be briefly considered here.

Any laser is a device which has and amplification medium and the cavity
around it. The laser can oscillate within the amplification spectrum of the
medium at certain frequencies which are defined by a cavity length L. Sepa-
ration between the cavity modes will be given as c/2L for e.g. linear cavity.
Formerly we considered single frequency lasers where one single laser mode is
carefully selected by implementation of selective elements.

To build the pulsed laser, one has to reverse the task and try to excite as
many modes in the laser as possible. It can be easily understood from the
uncertainty relation δντ ≈ 1. It indicates, that to reach short pulse regime
one needs a very broad emission spectrum. For example, the spectrum of a
femtosecond laser should spread over tens of nanometers.

Here is a simple illustration how one can get a pulse sequence from a set of
continuous modes. Assume that the field consists of a number of monochro-
matic waves with the unit amplitude En = ei(ω0+n∆ω)t, where n is the integer
number. Here the freqeuncy ω0 stands for the carrier frequency (e.g. optical
frequency) and the freqeuncy ω will be given by the distance between the next
cavity modes ∆ω = 2π(c/2L).

Writing down the sum we will get

E(t) =
N−1∑
n=0

ei(ω0+n∆ω)t = eiω0t

N−1∑
n=0

ein∆ωt =

= eiω0t

[
∞∑
n=0

ein∆ωt −
∞∑

n=N

ein∆ωt

]
= (13.4)

= eiω0t

[
1

1− ei∆ωt
− eiN∆ωt 1

1− ei∆ωt

]
=

1− eiN∆ωt

1− ei∆ωt
eiω0t ,

where we use the expression
∑∞

n=0 q
n = 1/(1− q) for |q| < 1. For the intensity

we will get

I(t) ∝ |E(t)|2 = 1− cosN∆ωt

1− cos∆ωt
=

sin2N∆ωt/2

sin2∆ωt/2
. (13.5)

An example for N = 21 is shown in Fig. 13.1. One can see that the intensity
pattern looks like a periodic number of pulses which are separated by the
interval T = 2L/2. The repetition rate of these pules is called the repetition
rate and is equal to frep = ∆ω/2π. The width of the pulse, in turn, will be
given by N : the pulse width τ is given by

τ ≈ 2π

∆ωN
. (13.6)
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Figure 13.1: a) The set of N = 21 equidistant frequencies separated by ∆ω −
0.01ω0. b) The set of pulses for the case a) calculated according to (13.5).

It is clear that the pulse becomes shorter by increasing the number of
contributing modes. For femtosecond lasers the number of modes reaches 106.
It is necessary to point out that the calculations are valid only in the case if all
phases of the modes in are the same (all of them equal zero En = ei(ω0+n∆ω)t).
In more general case En = ei(ω0+n∆ω)t+ϕn . If modes are not synchronized and
all of the ϕn are different one will not obtain periodic pulse sequence.

13.3 EOM as the frequency shifting element

In the electro-optical modulator the phase of light field penetrating the bire-
fringent crystal depends on the applied voltage. E.g the crystals which can be
used as EOMs are (NH4)H2 PO4 (ADP), LiTaO3, Li NbO3). It is necessary
that the crystal’s optical axis was orthogonal to the light k-vector as shown in
Fig. 13.2.

The light beam will be split in two — ordinary and extraordinary with
corresponding refraction indexes no and ne, the latter depends on the field Ez

as

n =

(
ne −

1

2
n3
erzzEz

)
. (13.7)

Here rzz is the tensor describing the non-linear responde of the crystal

δϕ =
2πn

λ
L =

n3
erzz
λ

L

d
πUm ≡ π

Um

Vπ
, (13.8)

where Um = dEz is the voltage applied to the crystal. Voltage Vπ, correspond-
ing to δϕ = π:

Vπ =
λ

n3
erzz

d

L
. (13.9)

EOM’s are widely used for phase and frequency (intra cavity) modulation,
for locking lasers and for optical frequency comb generation.
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Figure 13.2: Phase-modulator based on a crystal.

Figure 13.3: Left — EOM generating the sidebands. Right – EOM generating
sidebands in the optical cavity.

13.3.1 EOM for the frequency comb synthesis

The sidebands which are generated by and EOM can be used for establishing
a coherent “bridge” between and measurement the optical frequencies. To
reach that one has to increase the modulation frequency and the depth of
modulation.

To increase the modulation depth one can place the EOM in the optical
resonator as shown in Fig. 13.3. The power in the k-th sideband will be given
by ( in respect to the carrier power Pc)

Pk

Pc

= exp

(
− π|k|
F ∗ δ

)
, (13.10)

where δ is the modulation depth and F ∗ is the finesse of the optical cavity.
Typically, the power will decrease as 30 dB/THz by detuning from the carrier.

13.4 Kerr mode-locking

One of the very important mechanisms is the Kerr-lens mode-locking effect
which is caused by the third-order susceptibility χ(3)E3 in (13.1). If we leave
only third order terms in (13.1), we get

D = ϵ0E+P = ϵ0
(
1 + χ(1)

)
E+χ(3)E3 = ϵ0

[
1 + χ(1) + ϵ−1

0 χ(3)E2
]
E . (13.11)
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The square brackets will give us non-linear susceptibility :

ϵ′ = ϵ1 + ϵ2E
2 (13.12)

with the linear part ϵ ≡ 1+χ(1) and the coefficient ϵ2 ≡ χ(3)/ϵ0. Since n =
√
ϵ′

we get from (13.12)
n ≈ n0 + n2I . (13.13)

The refraction index is proportional to the laser field intensity I. Typically
around800 nm n2 ≈ 3× 10−16 cm2/W.

If we consider a Gaussian beam, the intensity will be distributed radially
which results in lensing effect. In the center of the beam the intensity is
higher, the refraction index is higher which is analogy to the positive lens.
This lens effect in the sapphire crystal or fiber the results in preferential soliton
propagation (high intensity pulses).

Besides lensing effect, the kerr effect results in generation of new frequencies
and pulses become chirped. If the pulse shape is I(t) = I0(t)[1− (t/τp)

2+ · · · ],
the Kerr medium will transform it to :

E(t) ∝ exp[−(t/τp)
2] exp(iω0t) exp(iω0Lc

−1{n0 + n2I0[1− (t/τp)
2]}) . (13.14)

Since
Φ(t) = ω0t+ ω0Lc

−1{n0 + n2I0[1− (t/τp)
2]} , (13.15)

we get the instant frequency

ω(t) ≡ d

dt
Φ(t) = ω0 − 2ω0

n2I0L

cτ 2p
t . (13.16)

13.4.1 Propagation of ultra short pulses

Propagation of short pulses in dispersive media have few new features com-
pared to the monochromatic wave. Short pulse covers broad spectral interval
and the pulse shape and delay can change significantly.

Consider the wave vector k = 2π/λ = ωn(ω)/c. The power series of k
around ω0:

k(ω) = k(ω0) + (ω − ω0)
dk

dω

∣∣∣∣
ω=ω0

+
1

2
(ω − ω0)

2 d
2k

dω2

∣∣∣∣
ω=ω0

+ · · · . (13.17)

The first term
k(ω0) ≡

ω

vϕ
(13.18)

describes propagation of the sine carrier wave ω0 inside the pulse envelope.
The phase after the distance z equals zk(ω0), and the time is given by tϕ =
k(ω0)z/ω0 = z/vϕ.
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The second term
dk

dω

∣∣∣∣
ω=ω0

=
1

υg
(13.19)

gives the propagation of the envelope of the pulse vg . The corresponding
refraction index equals

ng(λ) ≡
c

vg
= c

dk

dω
= c

d

dω

ω n

c
= n+ ω

dn

dω
= n(λ)− λ

d

dλ
n(λ) , (13.20)

where we used dω/dλ = −ω/λ.
The third term in (13.17) is so-called group velocity dispersion

d2k

dω2

∣∣∣∣
ω=ω0

=
d

dω

1

υg(ω)

∣∣∣∣
ω=ω0

. (13.21)

The pulse shape changes after propagating in the medium. It is typical char-
acterized by the parameter

D ≡ 1

L

dT

dλ
, (13.22)

where λ is the wavelength in vacuum, T is the propagation time for the pulse
along the length L in the medium. Since T = L/vg

D =
d 1
vg

dλ
= −ω

λ

d 1
vg

dλ
= −2πc

λ2
d2k

dω2
, (13.23)

In the optical fibers the dispersion of the group velocity is caused also by the
waveguide dispersion.

13.5 Precision optical spectroscopy and opti-

cal frequency measurements

The principle of modern optical frequency measurement is presented in fig. 13.4.
A laser is tuned to the wavelength of a narrow metrological transition (usually
referred to as a “clock transition”) in an atomic, ionic or molecular sample.
Most commonly, the laser frequency is stabilized by active feedback to a trans-
mission peak of a well isolated optical cavity (“reference cavity”) which allows
to achieve sub-hertz spectral line width of the interrogating laser. Some recent
advances in laser stabilization technique will be described in section ??. The
laser frequency is then scanned across the transition which allows to find the
line center ω0 using an appropriate line shape model. The measured transi-
tion quality factor can reach 1015 which provides extremely high resolution.
To obtain the transition frequency the beat note ωbeat between the laser and
one of the modes of the stabilized frequency comb is measured with the help
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Figure 13.4: Setup for the measurement an optical transition frequency in an
atomic sample with the help of an optical frequency comb.

of a frequency counter. Details of this type of measurement are presented in
section 13.5.1. If the comb is stabilized to a primary frequency reference (i.e. a
Cs atomic clock), the measurement presented in fig. 13.4 will yield the absolute
frequency of the optical transition. Absolute frequency measurements allow a
comparison of different results obtained at laboratories all over the world. On
the other hand, if the comb is stabilized with the help of some other reference,
which can be e.g. another optical frequency, the measurement will yield the
ratio ω0/ωref . One can thus compare transition frequencies in different atomic
samples avoiding time-consuming absolute frequency measurements.

13.5.1 Ultra-short pulse lasers and frequency combs

Frequency can be measured with by far the highest precision of all physical
quantities. In the radio frequency domain (say up to 100 GHz), frequency
counters have existed for a long time. Almost any of the most precise mea-
surements in physics have been performed with such a counter that uses an
atomic clock as a time base. To extend this accurate technique to higher fre-
quencies, so called harmonic frequency chains have been constructed since the
late 1960ies. Because of the large number of steps necessary to build a long
harmonic frequency chain, it was not before 1995 when visible laser light was
first referenced phase coherently to a cesium atomic clock using this method.

The disadvantage of these harmonic frequency chains was not only that
they could easily fill several large laser laboratories at once, but that they could
be used to measure a single optical frequency only. Even though mode locked
lasers for optical frequency measurements have been used in rudimentary form
in the late 1970ies, this method became only practical with the advent of
femtosecond (fs) mode locked lasers. Such a laser necessarily emits a very
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broad spectrum, comparable in width to the optical carrier frequency.
In the frequency domain a train of short pulses from a femtosecond mode

locked laser is the result of a phase coherent superposition of many continuous
wave (cw) longitudinal cavity modes. These modes at ωn form a series of
frequency spikes that is called a frequency comb. As has been shown, the
modes are remarkably uniform, i.e. the separation between adjacent modes is
constant across the frequency comb. This strictly regular arrangement is the
most important feature used for optical frequency measurement and may be
expressed as:

ωn = nωr + ωCE . (13.24)

Here the mode number n of some 105 may be enumerated such that the fre-
quency offset ωCE lies in between 0 and ωr = 2π/T . The mode spacing is
thereby identified with the pulse repetition rate, i.e. the inverse pulse repe-
tition time T . With the help of that equation two radio frequencies ωr and
ωCE are linked to the optical frequencies ωn of the laser. For this reason mode
locked lasers are capable to replace the harmonic frequency chains of the past.

To derive the frequency comb properties as detailed by (13.24), it is useful
to consider the electric field E(t) of the emitted pulse train. We assume that
the electric field E(t), measured for example at the lasers output coupling
mirror, can be written as the product of a periodic envelope function A(t) and
a carrier wave C(t):

E(t) = A(t)C(t) + c.c. . (13.25)

The envelope function defines the pulse repetition time T = 2π/ωr by demand-
ing A(t) = A(t−T ). The only thing about dispersion that should be added for
this description, is that there might be a difference between the group velocity
and the phase velocity inside the laser cavity. This will shift the carrier with
respect to the envelope by a certain amount after each round trip. The electric
field is therefore in general not periodic with T . To obtain the spectrum of
E(t) the Fourier integral has to be calculated:

Ẽ(ω) =

∫ +∞

−∞
E(t)eiωtdt . (13.26)

Separate Fourier transforms of A(t) and C(t) are given by:

Ã(ω) =
+∞∑

n=−∞

δ (ω − nωr) Ãn and C̃(ω) =

∫ +∞

−∞
C(t)eiωtdt . (13.27)

A periodic frequency chirp imposed on the pulses is accounted for by allowing
a complex envelope function A(t). Thus the “carrier” C(t) is defined to be
whatever part of the electric field that is non-periodic with T . The convolution
theorem allows us to calculate the Fourier transform of E(t) from Ã(ω) and
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C̃(ω):

Ẽ(ω) =
1

2π

∫ +∞

−∞
Ã(ω′)C̃(ω − ω′)dω′ + c.c. =

1

2π

+∞∑
n=−∞

ÃnC̃ (ω − nωr) + c.c. .

(13.28)
The sum represents a periodic spectrum in frequency space. If the spectral

width of the carrier wave ∆ωc is much smaller than the mode separation ωr,
it represents a regularly spaced comb of laser modes just like (13.24), with
identical spectral line shapes. If C̃(ω) is centered at say ωc, then the comb is
shifted by ωc from containing only exact harmonics of ωr. The frequencies of
the mode members are calculated from the mode number n:

ωn = nωr + ωc . (13.29)

The measurement of the ωc as described below usually yields a value modulo
ωr, so that renumbering the modes will restrict the offset frequency to smaller
values than the repetition frequency and (13.24) and (13.29) are identical.

If the carrier wave is monochromatic C(t) = e−iωct−iφ, its spectrum will
be δ-shaped and centered at the carrier frequency ωc. The individual modes
are also δ-functions C̃(ω) = δ(ω − ωc)e

−iφ. The frequency offset (13.29) is
identified with the carrier frequency. According to (13.25) each round trip
will shift the carrier wave with respect to the envelope by ∆φ = arg(C(t −
T )) − arg(C(t)) = ωcT so that the frequency offset may also be identified by
ωCE = ∆φ/T . In a typical laser cavity this pulse-to-pulse carrier-envelope
phase shift is much larger than 2π, but measurements usually yield a value
modulo 2π. The restriction 0 ≤ ∆φ ≤ 2π is synonymous with the restriction
0 ≤ ωCE ≤ ωr introduced above. Figure 13.5 sketches this situation in the
time domain for a chirp free pulse train.

Extending the frequency comb

The spectral width of a pulse train emitted by a fs laser can be significantly
broadened in a single mode fiber by self phase modulation. Assuming a single
mode carrier wave, a pulse that has propagated the length L acquires a self
induced phase shift of

ΦNL(t) = −n2I(t)ωcL/c , (13.30)

where the pulse intensity is given by I(t) = 1
2
cε0|A(t)|2. For fused silica the

non-linear Kerr coefficient n2 is comparatively small but almost instantaneous
even on the time scale of fs pulses. This means that different parts of the
pulse travel at different speed. The result is a frequency chirp across the pulse
without affecting its duration. The pulse is no longer at the Fourier limit so
that the spectrum is much broader than the inverse pulse duration where the
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Figure 13.5: Consecutive un-chirped pulses (A(t) is real) with carrier frequency
ωc and the corresponding spectrum (not to scale). Because the carrier propa-
gates with a different velocity within the laser cavity than the envelope (with
phase- and group velocity respectively), the electric field does not repeat itself
after one round trip. A pulse-to-pulse phase shift ∆φ results in an offset fre-
quency of ωCE = ∆φ/T . The mode spacing is given by the repetition rate ωr.
The width of the spectral envelope is given by the inverse pulse duration up
to a factor of order unity that depends on the pulse shape.

extra frequencies are determined by the time derivative of the self induced
phase shift Φ̇NL(t). Therefore pure self-phase modulation would modify the
envelope function in (13.25) according to

A(t) −→ A(t)eiΦNL(t). (13.31)

Because ΦNL(t) has the same periodicity as A(t) the comb structure of the
spectrum is maintained and the derivations (13.28) remain valid because pe-
riodicity of A(t) was the only assumption made. An optical fiber is most
appropriate for this process because it can maintain the necessary small focus
area over a virtually unlimited length. In practice, however, other pulse re-
shaping mechanism, both linear and non-linear, are present so that the above
explanation might be too simple.

A microstructured fiber uses an array of submicron-sized air holes that
surround the fiber core and run the length of a silica fiber to obtain a desired
effective dispersion. This can be used to maintain the high peak power over an
extended propagation length and to significantly increase the spectral broad-
ening. With these fibers it became possible to broaden low peak power, high
repetition rate lasers to beyond one optical octave as shown in fig. 13.6.
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Figure 13.6: Power per mode of the frequency comb on a logarithmic scale
(0 dBm=1mW). The lighter 30 nm (14 THz at −3 dB) wide spectrum displays
the laser intensity and the darker octave spanning spectrum (532 nm through
1064 nm) is observed after spectral broadening in a 30 cm microstructured
fiber. The laser was operated at ωr = 2π × 750 MHz (modes not resolved)
with 25 fs pulse duration. An average power of 180 mW was coupled through
the microstructure fiber.

Another class of frequency combs that can stay in lock for longer times are
fs fiber lasers. The most common type is the erbium doped fiber laser that
emits within the telecom band around 1550 nm. For this reason advanced
and cheap optical components are available to build such a laser. The mode
locking mechanism is similar to the Kerr lens method, except that non-linear
polarization rotation is used to favor the pulsed high peak intensity operation.
Up to a short free space section that can be build very stable, these lasers have
no adjustable parts.

Self-referencing

The measurement of ωCE fixes the position of the whole frequency comb and
is called self-referencing. The method relies on measuring the frequency gap
between different harmonics derived from the same laser or frequency comb.
The simplest approach is to fix the absolute position of the frequency comb
by measuring the gap between ωn and ω2n of modes taken directly from the
frequency comb. In this case the carrier-envelope offset frequency ωCE is di-
rectly produced by beating the frequency doubled red wing of the comb 2ωn

with the blue side of the comb at ω2n: 2ωn − ωn′ = (2n− n′)ωr + ωCE = ωCE

where again the mode numbers n and n′ are chosen such that (2n − n′) = 0.
This approach requires an octave spanning comb, i.e. a bandwidth of 375 THz
if centered at the titanium-sapphire gain maximum at 800 nm.

Figure 13.7 sketches the f − 2f self referencing method. The spectrum of
a mode locked laser is first broadened to more than one optical octave with an
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Figure 13.7: (left) — The principle of the f − 2f self referencing relies
on detecting a beat note at ωCE between the frequency doubled “red” wing
2(nωr + ωCE) of the frequency comb and the “blue” modes at 2nωr + ωCE.
(right) — More detailed layout of the self referencing scheme. See text for
details.

optical fiber. A broad band λ/2 wave plate allows to choose the polarization
with the most efficient spectral broadening. After the fiber a dichroic mirror
separates the infrared (“red”) part from the green (“blue”). The former is
frequency doubled in a non-linear crystal and reunited with the green part to
create a wealth of beat notes, all at ωCE. These beat notes emerge as frequency
difference between 2ωn −ω2n according to (13.24) for various values of n. The
number of contributing modes is given by the phase matching bandwidth ∆νpm
of the doubling crystal and can easily exceed 1 THz.

As described, both degrees of freedom ωr and ωCE of the frequency comb
can be measured up to a sign in ωCE that will be discussed below. For stabiliza-
tion of these frequencies, say relative to a radio frequency reference, it is also
necessary to control them. Again the repetition rate turns out to be simpler.
Mounting one of the laser’s cavity mirrors on a piezo electric transducer allows
to control the pulse round trip time. Controlling the carrier envelope frequency
requires some effort. Any laser parameter that has a different influence on the
cavity round trip phase delay and the cavity round trip group delay may be
used to change ωCE. Experimentally it turned out that the energy of the pulse
stored inside the mode locked laser cavity has a strong influence on ωCE. To
phase lock the carrier envelope offset frequency ωCE, one can therefore control
the laser power through its energy source (pump laser).

Frequency conversions

Given the above we conclude that the frequency comb may serve as a frequency
converter between the optical and radio frequency domains allowing to perform
the following phase coherent operations:
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• convert a radio frequency into an optical frequency. In this case both ωr

and ωCE from (13.24) are directly locked to the radio frequency source.

• convert an optical frequency into a radio frequency. In this case the
frequency of one of the comb modes ωn is locked to a clock laser while
the carrier envelope frequency ωCE is phase locked to ωr. The repetition
rate will then be used as the countable clock output.

• convert an optical frequency to another optical frequency, i.e. measuring
optical frequency ratios. In this case the comb is stabilized to one of the
lasers as described in the second case, but instead of measuring ωr one
measures the beat note frequency between another laser and its closest
comb mode ω′

n.


