Nikolai Kolachevsky

Lecture 1

- Frequency and time as most accurately measured quantities in physics.
- Clocks: from 17th century till today. Mechanical, radiofrequency, microwave and optical oscillators.
- Accuracy and stability. Phase and amplitude modulation, their mathematical representation and power spectrum.

From all known physical quantities, frequency can be measured with the highest accuracy.

Today's best optical clock fractional uncertainty

 ${<}10^{-17}$!

To measure a physical quantity with high accuracy, it is necessary to covert this quantity in frequency.

Road radar velocity \rightarrow frequency

> Josephson effect voltage \rightarrow frequency

Medical tomograph image local water density \rightarrow frequency

Different oscillators and characteristic frequencies and time scales

Progress of clock accuracy over last centuries

Mechanical clocks

First tower clocks accuracy: 15 min a day $\sim 10^{-2}$

Best pendulum Shortt Clocks of 20th century $\sim 10^{-8}$

Quartz crystalline oscillator

Typical instability in 1 day $~10^{-8}$

Allowed to detect Earth deceleration!

Study of coral growth

Earth rotation decelerates in time!

Tidal effects

A leap second

Leap second is necessary to adjust the length of the day in respect to the atomic time scale

Hill Garden

Microwave atomic clock (Cs beam clock and Cs fountain)

Cs beam clock $\sim 10^{-14}$

Cs fountain clock $~10^{-16}$

Optical clocks

$$
Q=\nu_0/\Delta\nu
$$

Instability <10-17

- mechanical: $\nu_0 \sim 1 \text{ Hz}$
- quartz: $\nu_0 \sim 10^7$ Hz
- microwave: $\nu_0 \sim 10^{10}$ Hz

Further? **Optical!** $\nu_0 \sim 10^{15}$ Hz.

Trapped ions

Optical lattice

Atomic clock schematics

Accuracy and stability

Oscillator. Modulated amplitude and phase

Harmonic oscillator equation

 $U(t) = U_0 \cos(\omega_0 t + \phi)$

Harmonic oscillator with varying amplitude and phase

$$
U(t) = U_0(t) \cos \varphi(t) = [U_0 + \Delta U_0(t)] \cos[\omega_0 t + \phi(t)].
$$

Relation between phase and frequency

$$
\nu(t) \equiv \frac{1}{2\pi} \frac{d\varphi(t)}{dt} = \frac{1}{2\pi} \frac{d}{dt} [2\pi \nu_0 t + \phi(t)] = \nu_0 + \frac{1}{2\pi} \frac{d\phi(t)}{dt}
$$

Damped oscillations

$$
U(t) = U_0 e^{-\frac{\Gamma}{2}t} \cos \omega_0 t
$$

Fourier transformation:

$$
A(\omega) = \int_0^\infty U_0 e^{-\frac{\Gamma}{2}t} \cos(\omega_0 t) e^{-i\omega t} dt
$$

$$
A(\omega) = \frac{U_0}{2} \frac{-i(\omega - \omega_0) + \frac{\Gamma}{2}}{(\omega - \omega_0)^2 + (\frac{\Gamma}{2})^2}
$$

Power spectrum

$$
P(\omega) = \frac{U_0^2}{4} \frac{1}{(\omega - \omega_0)^2 + (\frac{\Gamma}{2})^2}
$$

The Lorentzian function!

$$
Q = \frac{\omega_0}{\Gamma} = \frac{\omega_0}{\Delta \omega}
$$

Spectrum of damped oscillations

Harmonic amplitude modulation

$$
U_{\rm AM}(t) = (U_0 + \Delta U_0 \cos \omega_m t) \cos \omega_0 t
$$

=
$$
U_0 (1 + M \cos \omega_m t) \cos \omega_0 t,
$$

M – modulation index

Signal spectrum
\n
$$
U_{\text{AM}}(t) = U_0 \left[\cos \omega_0 t + \frac{M}{2} \cos(\omega_0 + \omega_m)t + \frac{M}{2} \cos(\omega_0 - \omega_m)t \right]
$$

Phase plane representation

Harmonic phase/frequency modulation

$$
U_{\rm PM}(t) = U_0 \cos \varphi = U_0 \cos(\omega_0 t + \delta \cos \omega_m t)
$$

 δ – phase modulation index

Signal spectrum

$$
U_{\rm PM}(t) = U_0 \sum_{n=-\infty}^{\infty} \Re\{(i)^n J_n(\delta) \exp[i(\omega_0 + n\omega_m)t]\}
$$

 J_n are the Bessel functions:

$$
J_0(\delta) = 1 - \left(\frac{\delta}{2}\right)^2 + \frac{1}{4} \left(\frac{\delta}{2}\right)^4 - \frac{1}{36} \left(\frac{\delta}{2}\right)^6 + \cdots
$$

\n
$$
J_1(\delta) = \left(\frac{\delta}{2}\right) - \frac{1}{2} \left(\frac{\delta}{2}\right)^3 + \frac{1}{12} \left(\frac{\delta}{2}\right)^5 - \cdots
$$

\n
$$
J_2(\delta) = \frac{1}{2} \left(\frac{\delta}{2}\right)^2 - \frac{1}{6} \left(\frac{\delta}{2}\right)^4 + \frac{1}{48} \left(\frac{\delta}{2}\right)^6 - \cdots
$$

\n
$$
J_3(\delta) = \frac{1}{6} \left(\frac{\delta}{2}\right)^3 + \frac{1}{24} \left(\frac{\delta}{2}\right)^5 + \frac{1}{240} \left(\frac{\delta}{2}\right)^7 - \cdots
$$

Spectra of phase modulated signal

Phase plane representation

