#### Nikolai Kolachevsky

#### Lecture 1

- Frequency and time as most accurately measured quantities in physics.
- Clocks: from 17th century till today. Mechanical, radiofrequency, microwave and optical oscillators.
- Accuracy and stability. Phase and amplitude modulation, their mathematical representation and power spectrum.



## From all known physical quantities, frequency can be measured with the highest accuracy.



Today's best optical clock fractional uncertainty

<10-17 !

ФИАН

## To measure a physical quantity with high accuracy, it is necessary to covert this quantity in frequency.



Road radar velocity  $\rightarrow$  frequency

Josephson effect voltage  $\rightarrow$  frequency



Medical tomograph image local water density → frequency



### Different oscillators and characteristic frequencies and time scales





#### **Progress of clock accuracy over last centuries**



#### **Mechanical clocks**



First tower clocks accuracy: 15 min a day  $\sim 10^{-2}$ 

# Best pendulum Shortt Clocks of 20<sup>th</sup> century $\sim 10^{-8}$



#### **Quartz crystalline oscillator**





## Typical instability in 1 day $\sim 10^{-8}$

## Allowed to detect Earth deceleration!





#### **Study of coral growth**



#### Earth rotation decelerates in time!







#### **Tidal effects**



#### A leap second

Leap second is necessary to adjust the length of the day in respect to the atomic time scale



#### Microwave atomic clock (Cs beam clock and Cs fountain)



Cs beam clock  $\sim 10^{-14}$ 









#### **Optical clocks**

$$Q = \nu_0 / \Delta \nu$$

#### Instability <10<sup>-17</sup>







- mechanical:  $\nu_0 \sim 1 \,\text{Hz}$
- quartz:  $\nu_0 \sim 10^7 \,\mathrm{Hz}$
- microwave:  $\nu_0 \sim 10^{10} \text{ Hz}$

Further? **Optical!**  $\nu_0 \sim 10^{15}$  Hz.



#### **Trapped** ions

#### **Optical lattice**

#### **Atomic clock schematics**





#### Accuracy and stability





ФИАН



#### **Oscillator. Modulated amplitude and phase**

Harmonic oscillator equation

 $U(t) = U_0 \cos(\omega_0 t + \phi)$ 

Harmonic oscillator with varying amplitude and phase

$$U(t) = U_0(t) \cos \varphi(t) = [U_0 + \Delta U_0(t)] \cos[\omega_0 t + \phi(t)].$$

Relation between phase and frequency

$$\nu(t) \equiv \frac{1}{2\pi} \frac{d\varphi(t)}{dt} = \frac{1}{2\pi} \frac{d}{dt} [2\pi\nu_0 t + \phi(t)] = \nu_0 + \frac{1}{2\pi} \frac{d\phi(t)}{dt}$$



#### **Damped oscillations**

$$U(t) = U_0 e^{-\frac{\Gamma}{2}t} \cos \omega_0 t$$

Fourier transformation:

$$A(\omega) = \int_0^\infty U_0 e^{-\frac{\Gamma}{2}t} \cos(\omega_0 t) e^{-i\omega t} dt$$

$$A(\omega) = \frac{U_0}{2} \frac{-i(\omega - \omega_0) + \frac{\Gamma}{2}}{(\omega - \omega_0)^2 + (\frac{\Gamma}{2})^2}$$

Power spectrum  $P(\omega) = \frac{U_0^2}{4} \frac{1}{(\omega - \omega_0)^2 + (\frac{\Gamma}{2})^2}$ 

The Lorentzian function!

$$Q = \frac{\omega_0}{\Gamma} = \frac{\omega_0}{\Delta \omega}$$



Spectrum of damped oscillations



#### Harmonic amplitude modulation

$$U_{\rm AM}(t) = (U_0 + \Delta U_0 \cos \omega_m t) \cos \omega_0 t$$
  
=  $U_0(1 + M \cos \omega_m t) \cos \omega_0 t$ ,

M – modulation index



Signal spectrum  

$$U_{\rm AM}(t) = U_0 \left[ \cos \omega_0 t + \frac{M}{2} \cos(\omega_0 + \omega_m) t + \frac{M}{2} \cos(\omega_0 - \omega_m) t \right]$$



#### **Phase plane representation**



#### Harmonic phase/frequency modulation

$$U_{\rm PM}(t) = U_0 \cos \varphi = U_0 \cos(\omega_0 t + \delta \cos \omega_m t)$$

 $\delta$  – phase modulation index

#### Signal spectrum

$$U_{\rm PM}(t) = U_0 \sum_{n=-\infty}^{\infty} \Re\{(i)^n J_n(\delta) \, \exp[i(\omega_0 + n\,\omega_m)\,t]\}$$

 $J_n$  are the Bessel functions:

$$J_{0}(\delta) = 1 - \left(\frac{\delta}{2}\right)^{2} + \frac{1}{4}\left(\frac{\delta}{2}\right)^{4} - \frac{1}{36}\left(\frac{\delta}{2}\right)^{6} + \cdots$$

$$J_{1}(\delta) = \left(\frac{\delta}{2}\right) - \frac{1}{2}\left(\frac{\delta}{2}\right)^{3} + \frac{1}{12}\left(\frac{\delta}{2}\right)^{5} - \cdots$$

$$J_{2}(\delta) = \frac{1}{2}\left(\frac{\delta}{2}\right)^{2} - \frac{1}{6}\left(\frac{\delta}{2}\right)^{4} + \frac{1}{48}\left(\frac{\delta}{2}\right)^{6} - \cdots$$

$$J_{3}(\delta) = \frac{1}{6}\left(\frac{\delta}{2}\right)^{3} + \frac{1}{24}\left(\frac{\delta}{2}\right)^{5} + \frac{1}{240}\left(\frac{\delta}{2}\right)^{7} - \cdots$$





#### Spectra of phase modulated signal



#### **Phase plane representation**

