Laser Cooling of Thulium Atoms

N. Kolachevsky

P.N. Lebedev Physical Institute

Moscow Institute of Physics and Technology

Russian Quantum Center

Учреждение Российской академии наук Физический институт им. П.Н. Лебедева РАН

D. Sukachev E. Kalganova G.Vishnyakova A. Sokolov A. Akimov V. Sorokin

THE RUSSIAN QUANTUM CENTER

Московский физико-технический институт государственный университет

optical atomic clocks – a new era of clocks

Laboratory frequency measurements

Laser cooling of Lanthanides

- Electronic structure of lanthanides (Yb, Dy, Er, Tm) is similar to alkali-earth elements (Ca, Sr, Mg) due to a closed outer electronic *s*-shell.
- Laser cooling of lanthanides is more challenging because of the absence of closed strong cooling transitions. All of strong transitions possess decay channels.

Requirements for an efficient laser cooling transition:

• strong rate > 10^7 s⁻¹

- cycled
- accessible for laser sources with a power of > 1 mW

¹Based upon ¹²C. () indicates the mass number of the most stable isotope.

For a description of the data, visit physics.nist.gov/data

NIST SP 966 (September 2003)

Applications

Very recently a significant progress in laser cooling and trapping of some lanthanides, including hollow-shell ones, is achieved. They are intensively studied and successfully implemented in

- **precision spectroscopy and optical frequency metrology**
- **study of interactions in quantum regime, study of quantum gases**

Ytterbium optical lattice clock are unprecedentedly stable

Comparison of two identical Yb clocks is performed at NIST, 2013 in the group of Andrew Ludlow

N. Hinkley at al., arXiv:1305.5869v1

Magnetic gases

Cr: dipole-dipole interactions

T. Lahaye,et al., [Phys Rev Lett.](http://www.ncbi.nlm.nih.gov/pubmed/18764592) 080401 (2008)

Rb

TELEVISION

Optical lattice+microscope for degenerate gases?

W. S. Bakr, J. I. Gillen, A. Peng, S. Foelling, M. Greiner [Nature 462, 74-77 \(2009\)](http://www.nature.com/nature/journal/v462/n7269/full/nature08482.html)

Hollow-shell Lanthanides

Vacancies in the hollow 4*f*-shell (e.g. Er, Dy, Tm) provide big magnetic moment in the ground state.

Magnetic moment of Dy equals 10 μ_B , of Er – $6\mu_B$. Strong dipole-dipole interactions between ground state atoms. Dipoleinteracting condensates and quantum simulators.

M. Lu, N.Q. Burdick, S.H. Youn, and B.L. Lev Phys. Rev. Lett. 107 190401 (2011) K. Aikawa et al. Phys. Rev. Lett. 108 210401 (2012)

Thulium electronic structure

- one vacancy in the 4 *f* shell
- relatively simple level structure
- fine splitting of the ground state

$$
\mu_{ground} = 4\mu_B
$$

shell s p d f L 0 1 2 3 3 1 2 *L S*

Large *J* causes large magnetic moments of the ground state

Similar polarizabilities of the groundstate fine structure components

To what extent the transition frequency remains unperturbed? Calculations needed! *(V.D. Ovsyannikov, 2010)*

Shielding of the 4*f* shell levels

• Because of the closed 6s² shell, the inner shells are shielded to the external perturbations. **ell levels**

be of the closed 6s² shell, the

s are shielded to the external

nns.

eding was first demonstrated

tally by E.B. Alexandrov in

be at al. measured for He-Tm

Nature, 2004)
 $\mathcal{G}_t^f \mathcal{G} \longrightarrow \mathcal{O}^5$

m

• The shileding was first demonstrated experimentally by E.B. Alexandrov in 1983

 J. Doyle at al. measured for He-Tm collisions (Nature, 2004)

$$
\mathcal{Q} \neq \mathcal{Q} \rightarrow \mathcal{Q}
$$

 For Tm-Tm collisions in specific magnetic state the shielding disappears (PRA, 2010)

E.B.Aleksandrov et al., Opt. Spektrosk., 54, 3, (1983) C.I. Hancox et al. Nature 431, 281 (2004) C.B.Connolly et al., Phys. Rev. A 81, 010702 (2010)

The M1 transition in Tm atom

Spectroscopy on the ground state sublevels in lanthanides **is not yet performed**

Thulium: $\lambda = 1.14 \mu m$, $\gamma \sim 1 Hz$

- suppression of the external electric fields perturbations
- small black-body shift
- loading in the optical lattice with small perturbation of the clock transition
- strong α -dependency $f \Box \alpha^2 R y$

Laser cooling of Thulium

Cooling transitions in Tm

Zeeman slowing

Magneto-optical trap (2010)

HS227/A AS2H

10⁶ atoms Tm-169

The life time of Tm atoms in the MOT

Binary collisions in the MOT

"Dark" MOT implemented

5 times more atoms

Temperature of atoms

Temperature measurements

Ballistic expansion of the atomic cloud to measure temperature

Temperature in Tm MOT

min 240 25 $T^{}_{\!D} = 240 \mu K$ T $= 25 \mu K$ μ μ Ξ Ξ

Magnetic field

Due to specific level structure of Tm atom (degeneracy of the Landé g-factors) sub-Doppler mechanism **IS EFFICIENT** even in the presence of magnetic field

Role of Landé *g***-factors**

$$
Tm \t gg = 1.14, ge = 1.12
$$

(2% difference)

Rb: $g_g = 1/2$, $g_e = 2/3$

4

(2% difference) (30% difference)

M. Walhout, J. Dalibard, S.L.Rolston, and W.D. Phillips, J. Opt.Soc. Am. 9, 1997 (1992)

Magnetic trap for Tm

Magnetic trap

(in presence of gravitation)

III Place and

Magnetic trap

(in presence of gravitation)

Magnetic trap profile

Only atoms in $m_F=+2,3,4$ states are trapped

Second stage cooling

First stage cooling at 410 nm $T_D=240 \mu K$

Second stage cooling at 530.7 nm $T_D=9 \mu K$

Frequency-doubled laser diode radiation is used

Second stage cooling

- Efficient cooling recapture directly from Zeeman slower
- Number of atoms similar to blue MOT due to Zeeman slower design
- Recapture efficiency from blue MOT 100%
- •To reach lower temperatures we need to narrow the diode laser line width (lower than 100 kHz)

Spectroscopy of Tm clock transition in the optical lattice

Dipole optical trap with a standing wave

stabilized stabilized
1.14 μ m

Excitation of the clock transition in trapped atoms

 $4 f^{13} 6 s^2 J = 7/2$

• Trapping depends on polarization => lattice effect!

Intermediate conclusions

- Tm atoms are trapped in an optical lattice and prepared for spectroscopy of clock transition at 1.14 μ m
- Temperature of atoms is still too high for efficient recapture into the shallow lattice \Rightarrow further cooling is necessary
- Narrow line lasers for second stage cooling (530.7 nm) and studying of metrological transition $(1.14 \mu m)$
- Increasing of the number of atoms

Stabilized laser systems at Lebedev Institute

Vertical cavity F=60000

Comparison of two systems designed for 698 nm

Laser systems for optical clocks at Lebedev Institute Transportable setup

Vertical cavity

Compensation of temperature fluctuations

Spectral line width

Beatnote between two independent cavities *(972 nm, for hydrogen spectroscopy)*

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, Phys. Rev. A 77, 053809 (2008)

GaN diode lasers @ 410.6 nm

Saturation absorption signal in Tm

Diode PHR-803T (HD-DVD, Blue-Ray)

+70 ^oC

Fraction of power in a single frequency >95%

Tm cloud trapped by diode laser radiation

Injection locking gives up to 150 mW @ 410.6 nm

2D molasses for Tm beam collimation

• Slave diode SF-BW512P

- Max power 500 mW
- Central wavelength:
	- 405 nm @ 25° C
	- 410 nm @ 70° C
- Seed power < 1 mW
- Output power 120 mW

up to threefold increase in the number of atoms in the MOT

Thank you for attention!

Cooling transitions in Tm

