Nikolai Kolachevsky

Lecture 5

- Global navigation system structure space segment, ground segment, user segment. Satellites orbits, frequency shifts, accuracy.
- Data coding and decoding. CDMA, method.
- Atmospheric errors, corrections, clock synchronization.

Global satellite navigation system

USA : GPS

Russia: GLONASS

Europe: GALILEO

China: COMPASS

GPS segments

Ground stations

Calculation of positions

Non-linear equations

 $P_i = R_i + c \cdot \delta t_u$

$$x_1, y_1, z_1, T_{GNSS}$$

 $R1$
 $c \cdot \delta t_u$
 U'
 $C \cdot \delta t_u$
 U'
 $C \cdot \delta t_u$
 U'
 $C \cdot \delta t_u$
 $C \cdot \delta t_u$

 x_2, y_2, z_2, T_{GNSS}

$$(x_1 - X)^2 + (y_1 - Y)^2 + (z_1 - Z)^2 = (P_1 - c \,\delta t_u)^2,$$

$$(x_2 - X)^2 + (y_2 - Y)^2 + (z_2 - Z)^2 = (P_2 - c \,\delta t_u)^2,$$

$$(x_3 - X)^2 + (y_3 - Y)^2 + (z_3 - Z)^2 = (P_3 - c \,\delta t_u)^2,$$

$$(x_4 - X)^2 + (y_4 - Y)^2 + (z_4 - Z)^2 = (P_4 - c \,\delta t_u)^2.$$

ФИАН

Satellite orbits

$$G\frac{M_E M_S}{R^2} = M_S \omega^2 R$$

 $GM_E = 3,986\,004\,418 \cdot 10^{14}\,\mathrm{m}^3/\mathrm{s}^2$

Orbit period: 12 hours - 2 min (simplifies calculations)

Orbit radius: 26 560 km

Orbit eccentricity: 0.02

Min number of satellites: 24

On-board clocks

Cs/Rb atomic clocks (GPS)

H-maser (Galileo)

Disseminated frequencies

Above 2 GHz – beam antenna necessary Below 100 MHz – ionospheric delays are huge! Needs high bandwidth to transmit PRN codes

Figure 2.4 GPS signals. Currently, each GPS satellite transmits three signals, two on L1 and one on L2 frequency. The BPSK-modulated signals are shown. The signal carrying C/A-code on L1 was degraded purposely throughout the 1990s, but this practice has now ended. Access to P(Y)-code is limited to the DoD-authorized users via encryption.

Data coding

Figure 5.3: Phase modulation by a pseudo-random code (PRN).

Pseudo-random code

Carrier

Uncertainties in GPS system: I

Geometric dilution of precision GDOP

 $2 \Delta R$

 Π

Uncertainties in GPS system: II

Effects of General Relativity

$$U = -\frac{GM_E}{R} - \frac{\omega^2 R^2}{2}.$$
 (5.3)

For the clock on board of the satellite we get

$$U_{\text{satellite}} = -\frac{GM_E}{R} - \frac{GM_E}{2R} = -\frac{3}{2}\frac{GM_E}{R}, \qquad (5.4)$$

using eqs. (5.3) (5.2).

For the clock resting on the geoid's surface we get $U_{\text{surface}} = -62, 6 \text{ (km/s)}^2$. The potential difference between two clocks result in the time difference of

$$\frac{\Delta\nu}{\nu} = \frac{\Delta U}{c^2} = \frac{1}{c^2} \left(-\frac{3}{2} \frac{GM_E}{R} + 62, 6 \cdot 10^6 \, \frac{\mathrm{m}^2}{\mathrm{s}^2} \right) \,. \tag{5.5}$$

Uncertainties in GPS system: II

Effects of General Relativity

Transmitted

 $10{,}229\,999\,995\,432\,6\,\mathrm{MHz}$

Received

 $10,23\,\mathrm{MHz}$

Uncertainties in GPS system: III

Ionospheric delays

Index of refraction (phase velocity)

$$n_p = 1 + \frac{c_2}{\nu^2}$$

$$c_2 = -40.3 \times n_e \text{ Hz}^2$$

ФИАН

Uncertainties in GPS system: III

Index of refraction (phase velocity) $n_p = 1 + \frac{c_2}{\nu^2}$ $c_2 = -40.3 \times n_e \text{ Hz}^2$ We get: $n_g = 1 - \frac{c_2}{\nu^2}$ Group velocity $c_/n_g$ $n_g = n_p + \nu dn_p/d\nu$

Thus, the ionospheric delay for the data transfer can be given by

$$\Delta T = \frac{40, 3 \cdot \text{TEC}}{c\nu^2}.$$

One can measure ionospheric delay

$$\Delta \tilde{T} \equiv \Delta T(L1) - \Delta T(L2) = \frac{40, 3 \cdot \text{TEC}}{c} \left(\frac{1}{\nu_1^2} - \frac{1}{\nu_2^2}\right) = \Delta T(L1) \frac{\nu_2^2 - \nu_1^2}{\nu_2^2}$$

Uncertainties in GPS system: III

Without correction

With correction

Tropospheric delays cannot be corrected (no dispersion)

Technical uncertainties:

Multipath propagation

Total uncertainty budget

Source of uncertainty	uncertainty
on-board clocks	$3,0\mathrm{m}$
satellite orbits	$1,0\mathrm{m}$
other perturbations	$0,5\mathrm{m}$
ephemerides prediction	$4,2\mathrm{m}$
other	$0.9\mathrm{m}$
ionospheric delay	$2,3\mathrm{m}$
tropospheric delay	$2,0~\mathrm{m}$
receiver nose	$1,5\mathrm{m}$
propagation	$1,2\mathrm{m}$
by different channels	
others	$0,5\mathrm{m}$
sum	$6,6\mathrm{m}$

Different acquisition methods

method		relative
	time uncertainty	frequencys uncertainty
one-way	$<\!20\mathrm{ns}$	$< 2 \cdot 10^{-13}$
one-channel differential	$\approx 10 \mathrm{ns}$	$\approx 10^{-13}$
multi-channel differential	$< 5\mathrm{ns}$	$< 5 \cdot 10^{-14}$
differential with carrier phase measurement	$< 500 \mathrm{ps}$	$< 5 \cdot 10^{-15}$

CDMA basics

vectors

 $u = (a, b) \quad v = (c, d)$

product

$$u \cdot v = ac + bd$$

Orthogonal set : Walsh matrices