Nikolai Kolachevsky

Lecture 6

- Pulsars as astrophysical sources of periodic pulses. Physics of pulsars.
- Drift of periastrium and General relativity tests. Radiation of gravitational waves.
- Quasar spectra. Search for drift of the fine structure constant.
- Calibration of astrophysical spectrometers. Search for exasolar planets.

Pulsars – precise natural clocks in the Universe

Shortest observed pulse period **1.3ms** PSR B1937+21

Speed on the surface $\langle c!$ \Rightarrow R_{max}=50 km

Angular velocity: Mass:

$$
\Omega\,=\,\sqrt{GM/R^3}\hskip.75cm M\,=\,4\pi R^3\rho/3
$$

Highest density – neutron star density

 $\rho \approx 10^{17} \text{ kg/m}^3$

Rotation period \sim 1 ms – seems to be true!

Neutron stars and white dwarfs

Electron-degenerate matter

Neutron star – neutronproton Fermi liquid

Equations of state a white dwarf

Electron-degenerate matter (electron-nuclei plasma)

Non-relativistic case

 $p= 10^5 - 10^9$ g/cm³

High-energy electron move very fast

Relativistic regime!

Equations of state a white dwarf

 $\sim M^{4/3}$

 $\sim M^2$

Chandrasekar limit

1.44 solar mass !

If mass becomes higher -> supernova class Ia Standard candle

Hubble constant determination

Emission pattern

 $(33 \text{ ms} < P < 5 \text{ s})$

Millisecond pulsars

 $1,5 \text{ ms}$ to 30 ms .

Millisecond pulsars are old (billion years), rather weak magnetic field

Period variation

```
\dot{P} \approx 10^{-19} s/s.
```
Have orbital twins!

Pulsars: magnetic field increases!

$$
(p^+ + e^- \to n + \nu)
$$

Initial star (Solar radius) $R_i \approx 7 \cdot 10^8 \,\mathrm{m}$ Pulsar $R_f \approx 5 \cdot 10^4 \,\mathrm{m}$

Magnetic flow is conserved

$$
B_i 4\pi R_i^2 = B_f 4\pi R_f^2
$$

Magnetic field can reach

 $B_f = 10^8 \,\rm T$

Or even higher

Deceleration due to electromagnetic radiation emission

Rotating magnetic dipole

 $\frac{dE}{dt} = \frac{2(M\sin\alpha)^2\Omega^4}{3c^2}$

Energy taken from rotation $E_{\text{rot}} = \frac{1}{2} \Theta \Omega^2$

Huge inertia moment $8/15\pi\rho R^5 \approx 1, 3 \cdot 10^{38} \text{ kg m}^3$

$$
\frac{dE_{\rm rot}}{dt} = \Theta \Omega \dot{\Omega} = -4\pi^2 \Theta \frac{\dot{P}}{P^2}
$$

Energy dissipation 10^{23} W $\leq \dot{E}_{\text{rot}} \leq 10^{26}$ W Comparable to the Sun radiation

One can evaluate magnetic moment

$$
\dot{\Omega} = \frac{2(M\sin\alpha)^2}{3\Theta c^3} \Omega^3
$$

Pulsar chronometry

Fig. 1. Timing stability of radio signals from pulsars $B1937+21$, B1855+09, and J0437-4715, compared with that of an atomic clock.

Binary star system (binary pulsars)

Hulse and Taylor -> Nobel Prize 1993

The period of the orbital motion is 7.75 hours, and the stars are believed to be nearly equal in mass, about 1.4 solar masses.

Arrival time variation

When the pulsar is on the side of its orbit closest to the Earth, the pulses arrive more than 3 seconds earlier that they do when it is on the side furthest from the Earth. The difference is caused by the shorter distance from Earth to the pulsar when it is on the the close side of its orbit. The difference of 3 light seconds implies that the orbit is about 1 million kilometers across.

Period variation

Velocity of the pulsar changes as it moves through its orbit. When the pulsar is moving towards us and is close to its periastron, the pulses should come closer together.

Gravitational field is stronger \Rightarrow the pasage of time is slowed down The time between pulses (ticks) lengthens just as Einstein predicted. The pulsar clock is slowed down when it is travelling fastest and in the strongest part of the gravitational field

Rotation of periastron

The observed advance for PSR 1913+16 is about 4.2 degrees per year; the pulsar's periastron advances in a single day by the same amount as Mercury's perihelion advances in a century.

Gravitational waves emission?

Power radiated by Gravitational waves emission?

Earth-Sun system

$$
P = \frac{dE}{dt} = -\frac{32}{5} \frac{G^4}{c^5} \frac{(m_1 m_2)^2 (m_1 + m_2)}{r^5}
$$

200 W power in gravitational waves

Wave amplitude

$$
h_{+} = -\frac{1}{R} \frac{G^2}{c^4} \frac{4m_1m_2}{r} = -\frac{1}{R} 1.7 \times 10^{-10} \text{ meters}
$$

For the distance of 1 light year

 $h \sim 10^{-26}$

Search for the possible variation of the fine structure constant

Fundamental Constants in Quantum Mechanics

Schrödinger in atomic units:

$$
E_{\text{Bohr}} = -\frac{1}{n^2}
$$

Use atomic units noth table parameters !

Full recoil and QED:

$$
E_{QED} = -\frac{1}{n^2} + \frac{3(2j+1) - 8n}{4(2j+1)n^4} \alpha^2 + \dots
$$

= $-\frac{1}{n^2} + a_2 \alpha^2 + a_4 \alpha^4 + a_{50} \alpha^5 + a_{51} \alpha^5 ln(\alpha^{-2}) + \dots$

 $_6$ Adjust parameter to matc b observations.

The Role of Parameters

Parameters express our ignorance.

The standard model has 18 of them.

What's the Problem with the Fundamental Constants ?

Fundamental Constants

- Why do the constants have the observed values?
- Can't be calculated standard stade is incomplete.
- Look for phenomena beyond the standard model.
- A complete theory should produce small numbers. small numbers

Dirac 1937: The age of the universe in atomic units divided by the electromagnetic force between an electron and a proton measured in units of their gravitational force is such

a small number (believed to be \approx 3 in 1937).

Almost every "constant" could vary in time.

Evolution of the Universe

Search for Drift

$$
\frac{\Theta(t_2) - \Theta(t_1)}{t_2 - t_1} \geq \text{Model} \qquad \frac{\partial \alpha_i}{\partial t}
$$

Search for Drift

 Θ

Sensitivity to the DRIFT is much higher!

Sensitivity to α variations for different methods

Oklo Phenomenon

 $\Delta\,\alpha/\alpha$ = (–0.36 $\pm1.44) \!\cdot\!10^{-8}$

Y.Fujii *et al., Nucl. Phys.* B, **573, 377 (2000)**

Atomic Spectra

Quasar Absorption Spectra

J.K. Webb *et al*., *Phys. Rev. Lett.* **87**, 091301 (2001)

"Many-Multiplet" Method

Keck/HIRES results

J.K. Webb *et al*., *Phys. Rev. Lett.* **87**, 091301 (2001)

Recent astrophysical results

• Murphy et al, 2003: **Keck telescope,** 143 systems, 23 lines, 0.2<z<4.2 $\Delta\alpha/\alpha = -0.543(0.116) \times 10^{-5}$

- Quast et al, 2004: **VLT telescope,** 1 system, Fe II, 6 lines, *z*=1.15 $\Delta\alpha/\alpha = -0.4(1.9)(2.7) \times 10^{-6}$
- Srianand et al, 2004: **VLT telescope,** 23 systems, 12 lines, Fe II, Mg I, Si II, Al II, 0.4<*z*<2.3 $\Delta\alpha/\alpha = -0.6(0.6) \times 10^{-6}$

Comparison of sensitivities

Optical Frequency Metrology

Laboratory experiments

- high sensitivity to drift $(< 10^{-16}$)
- **short time intervals (~10 yrs)**
- **high reproducibility, big variety of samples**
- **straightforward analysis of systematics**
- **weak model dependence**

Ellipse Plot

T. Rosenband et al. SCIENCE 319, 1808 (2008)

Sensitivity to linear drift

Laser Frequency Combs for Astronomical Observations

Image: ESO T. Steinmetz et al, SCIENCE 321, 5894 (2008)