Measuring the Frequency of Light with Mode Locked Lasers

1

Locking the Cavity Modes of a Laser

The Soliton Laser

The effect of group velocity dispersion (GVD) and self phase modulation (SPM) on the puls reshaping cancel in a soliton.

- SPM: laser crystal $n(I) = n_0 + I(t) n_2$ with $n_2 > 0$
- GVD: prism pairs and/or chirped mirrors $d^21/dk^2 \le 0$

Mechanical Soliton: Runners on a Soft Surface

Carrier Envelope Phase of the Pulses

Carrier Envelope Offset Frequency

$$E(t) = A(t) e^{-i1_{c}t} = \sum_{m=-\infty}^{+\infty} A_{m} e^{-im1_{r}t - i1_{c}t}$$

$$1 = m1_{r} + 1_{c} \neq n1_{r} + 1_{CE}$$

$$1_{CE} < 1_{cE}$$

Pulse-to-Pulse Carrier Envelope Phase Slippage

$$E(t) = \sum_{n=-\infty}^{+\infty} A_n e^{-in1_r t - i1_{CE}t}$$

$$E(t+T) = \sum_{n=-\infty}^{+\infty} A_n e^{-in1_r t - i1_{CE}t - i2\pi 1_{CE}/1_r}$$

$$= E(t) e^{-i\Delta 7} \qquad \Delta 7 = 2\pi 1_{CE}/1_r$$

$$1_{CE} = \Delta 7/T$$

Selecting a Sinlge Mode from the Comb

Measuring the Carrier-Envelope Phase Slippage

it is simple to detect 1_{CE} of an octave wide frequency comb:

Controlling the Frequency Comb

depends on the cavity length

Optical Frequency Counter

every mode can be used for optical frequency measurement

Optical Prescaler (Frequency Divider)

Generating an Octave Spanning Comb

self phase modulation: $n(I) = n_0 + I(t) n_2$ with $I(t) \sim |A(t)|^2$

non-linear phase shift after propagating the length l: $\Phi_{NL}(t) = -I(t) n_2 l_c l/c$

extra frequencies:
$$\Phi_{NL}(t) = -I(t) n_2 l_c l/c$$

- 10 power per mode [dBm] - 20 University of Bath - 30 William Wadsworth - 40 Jonathan Knight - 50 **Tim Birks** - 60 - 70 fiber output Phillip Russell - 80 Ti:Sapphire U. of Bath England - 90 oscillator - 100 - 120 400 500 800 900 600 700 1000 1100 1200 1300 wavelength [nm]

13

Self Referencing the Frequency Comb

Optical Synthesizer

Based on a 650 MHz Ti:sapphire ring laser (GigaOptics).

Based on a Cr:LiSAF laser made at RTWH Aachen by P.Russbült, K.Gäbel and R.Poprave.

Harmonic Frequency Chains vs Optical Synthesizers

Self Differencing the Comb

Testing the Self-Differenced Comb

Frequency Measurement

Laser frequency measurement example

- Precission Spectroscopy
- Time Domain: Stabilization of the CE phase

Doing Spectroscopy with the Comb

Pionieered by: Ye.V.Baklanov, V.P.Chebotayev, Appl. Phys 12, 97 (1977) and M.J.Snadden, A.S.Bell, E.Riis, A.I.Ferguson, Opt. Comm. 125, 70 (1996)

HHGs with 114 MHz Repetition Rate

High Harmonics Generation (HHG)

Stabilzing the CE Phase of Intense Pulses

Phase Sensitive High Harmonic Generation

calculated HHG intensity @ 3.2nm

Phase Sensitive High Harmonic Generation

